Skip to main content
Log in

Cross-recurrence plot quantification analysis of input and output signals for the detection of chatter in turning

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Metal cutting is a complex nonlinear dynamical process. Analysis of signals from turning operation shows that the machining exhibits a low-dimensional chaos. The self-excited vibration caused by the regenerative effect, usually called chatter, can be created during machining by increasing one cutting parameter, while keeping all other cutting parameters constant. A cross-recurrence plot (CRP) enables the study of synchronisation or time differences in two time series. CRP-based methodology is used to find the point of transition from normal cutting to chatter cutting. In this method, two signals, one input signal (power to the lathe motor) and one output signal (cutting tool vibration), are recorded simultaneously at a constant sampling rate during cutting. A time series is generated from the recorded values, and cross-recurrence plot is prepared. This CRP can be quantified using Cross-Recurrence Quantification Analysis (CRQA). Abrupt variation in the CRQA parameters indicates the onset of chatter vibration. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP-based methodology is capable of recognising the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Quintana, G., Ciurana, J.: Chatter in machining processes: a review. Int. J. Mach. Tools Manuf. 51(5), 363–376 (2011). doi:10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  2. Gradisek, J., Govekar, E., Grabec, I.: Qualitative and quantitative analysis of stochastic processes based on measured data. II. Applications to experimental data. J. Sound Vib. 252(3), 563–572 (2002). doi:10.1006/jsvi.2001.4051

    Article  Google Scholar 

  3. Landers, R.G., Ulsoy, A.G.: Supervisory machining control: design and experiments. CIRP Ann. 47(1), 301–306 (1998). doi:10.1016/S0007-8506(07)

    Article  Google Scholar 

  4. Choi, T., Shin, Y.S.: Online chatter detection using wavelet based parameter estimation. J. Manuf. Sci. Eng. 125(1), 21–28 (2003)

    Article  MathSciNet  Google Scholar 

  5. Soliman, E., Ismail, F.: Chatter detection by monitoring spindle drive current. Int. J. Adv. Manuf. Technol. 13(1), 27–34 (1997). doi:10.1007/BF01179227

    Article  Google Scholar 

  6. Schmitz, T.L., Medicus, K., Dutterer, B.: Exploring once per revolution audio signal variance as a chatter indicator. Min. Sci. Technol. 6(2), 215–233 (2002)

    Google Scholar 

  7. Karpuschewski, B., Wehmeier, M., Inasaki, I.: Grinding monitoring system based on power and acoustic emission sensors. CIRP Ann. 49(1), 235–240 (2000). doi:10.1016/S0007-8506(07)

    Article  Google Scholar 

  8. Marwan, N., Thiel, M., Nowaczyk, N.R.: Cross recurrence plot based synchronization of time series. Nonlinear Process. Geophys. 9(3/4), 325–331 (2002)

    Article  Google Scholar 

  9. Marwan, N., Kurths, J.: Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 302(5–6), 299–307 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Marwan, N., Kurths, J.: Cross recurrence plots and their applications. In: Benton, C.V. (ed.) Mathematical Physics Research at the Cutting Edge, pp. 101–139. Nova Science, Hauppauge (2004). ISBN: 1-59033-939-8

    Google Scholar 

  11. Elias, J., Rajesh, V.G., Narayanan Namboothiri, V.N.: Recurrence quantification analysis applied to sequential speckle images of machined surface for detection of chatter in turning. Proc. SPIE 7064, 706408 (2008). doi:10.1117/12.795777

    Article  Google Scholar 

  12. Franca, L.F., Savi, M.A.: On the time series determination of Lyapunov exponents applied to the nonlinear pendulum analysis. In: Nonlinear Dynamics, Chaos, Control and Their Applications to Engineering Sciences, pp. 356–366. ABCM, Rio de Janeiro (2000)

    Google Scholar 

  13. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension from phase-space reconstruction using a geometrical construction. Phys. Rev. A 25, 3403–3411 (1992)

    Article  Google Scholar 

  14. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zbilut, J.P., Giuliani, A., Webber, C.L., Jr.: Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Phys. Lett. A 246, 122–128 (1998)

    Article  Google Scholar 

  16. Shockley, K., Buttwill, M., Zbilut, J.P., Webber, C.L. Jr.: Cross recurrence quantification of coupled oscillators. Phys. Lett. A 305, 59–69 (2002)

    Article  MATH  Google Scholar 

  17. Marwan, N., Kurths, J.: Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 302, 299–307 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shockley, K.: Cross recurrence quantification of interpersonal postural activity. In: Riley, M.A., Van Orden, G. (eds.) Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, pp. 143–177 (2004). Chap. 4

    Google Scholar 

  19. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 66(2), 026702 (2002)

    Article  Google Scholar 

  20. Webber, C.L. Jr., Zbilut, J.P.: In: Riley, M.A., Van Orden, G. (eds.) Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, pp. 26–94 (2004). Chap. 2

    Google Scholar 

  21. Lipski, J., Litak, G., et al.: Surface quality of a work material’s influence on the vibrations of the cutting process. J. Sound Vib. 252(4), 729–737 (2002)

    Article  Google Scholar 

  22. Nair, U., et al.: Permutation entropy based real-time chatter detection using audio signal in turning process. Int. J. Adv. Manuf. Technol. 46, 61–68 (2010)

    Article  Google Scholar 

  23. Cao, Y., et al.: Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. A, Gen. Phys. 70, 046217 (2004)

    Google Scholar 

  24. Rajesh, V.G., Narayanan Namboothiri, V.N.: Flank wear detection of cutting tool inserts in turning operation: application of nonlinear time series analysis. Soft Comput. 14, 913–919 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

Software developed by Dr. N. Marwan and Dr. C.L. Webber Jr. is used in the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Elias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elias, J., Narayanan Namboothiri, V.N. Cross-recurrence plot quantification analysis of input and output signals for the detection of chatter in turning. Nonlinear Dyn 76, 255–261 (2014). https://doi.org/10.1007/s11071-013-1124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1124-0

Keywords

Navigation