Skip to main content
Log in

Collective dynamics of periodic nonlinear oscillators under simultaneous parametric and external excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The collective dynamics of a periodic structure of coupled Duffing–Van Der Pol oscillators is investigated under simultaneous external and parametric excitations. An analytico-computational model based on a perturbation technique, combined with standing wave decomposition and the asymptotic numerical method is developed for a finite number of coupled oscillators. The frequency responses and the basins of attraction are analyzed for the case of small arrays, demonstrating the importance of the multi-mode solutions and the robustness of their attractors. This model can be exploited to design periodic structure-based smart systems with high performance, by taking advantage of the multi-modes induced by the collective dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brillouin, L.: Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. Dover Publications, Mineola (1953)

    MATH  Google Scholar 

  2. Mead, D.J.: A general theory of harmonic wave propagation in linear periodic systems with multiple coupling. J. Sound Vib. 27(2), 235–260 (1973)

    Article  MATH  Google Scholar 

  3. Langley, R.S.: The response of two-dimensional periodic structures to point harmonic forcing. J. Sound Vib. 197(4), 447–469 (1996)

    Article  Google Scholar 

  4. Langley, R.S., Bardell, N.S., Ruivo, H.M.: The response of two-dimensional periodic structures to harmonic point loading: a theoretical and experimental study of beam grillage. J. Sound Vib. 207(4), 521–535 (1997)

    Article  Google Scholar 

  5. Jensen, J.S.: Phononic band gaps and vibrations in one- and two-dimensional mass–spring structures. J. Sound Vib. 266(5), 1053–1078 (2003)

  6. Collet, M., Cunefare, K.A., Ichchou, M.N.: Wave motion optimization in periodically distributed shunted piezocomposite beam structures. J. Intell. Mater. Syst. Struct. 20(7), 787–808 (2009)

    Article  Google Scholar 

  7. Collet, M., Ouisse, M., Ruzzene, M., Ichchou, M.N.: Floquet–Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems. Int. J. Solids Struct. 48(20), 2837–2848 (2011)

  8. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–305 (2011)

    Article  Google Scholar 

  9. Efremidis, Nikolaos K., Fleischer, J.W., Segev, Mordechai, Christodoulides, Demetrios N.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003)

  10. Alexander, Tristram J., Sukhorukov, Andrey A., Kivshar, Yuri S.: Asymmetric vortex solitons in nonlinear periodic lattices. Phys. Rev. Lett. 93, 063901 (2004)

    Article  Google Scholar 

  11. Quan, Xu, Qiang, Tian: Periodic, quasiperiodic and chaotic discrete breathers in a parametrical driven two-dimensional discrete Klein-Gordon lattice. Chin. Phys. Lett. 26(4), 040501 (2009)

  12. Flach, S., Gorbach, A.: Discrete breathers in Fermi–Pasta–Ulam lattices. Chaos Interdiscip. J. Nonlinear Sci. 15(1), 015112 (2005)

  13. Chakraborty, G., Mallik, A.K.: Dynamics of a weakly non-linear periodic chain. Int. J. Non-Linear Mech. 36(2), 375–389 (2001)

    Article  MATH  Google Scholar 

  14. Romeo, F., Rega, G.: Wave propagation properties in oscillatory chains with cubic nonlinearities via nonlinear map approach. Chaos Solitons Fractals 27(3), 606–617 (2006)

  15. Romeo, F., Rega, G.: Periodic and localized solutions in chains of oscillators with softening or hardening cubic nonlinearity. Meccanica 50(3), 721–730 (2015)

    Article  MathSciNet  Google Scholar 

  16. Manktelow, K., Narisetti, R.K., Leamy, M.J., Ruzzene, M.: Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures. Mech. Syst. Signal Proces. 39(12), 32–46 (2013)

    Article  Google Scholar 

  17. Manktelow, K., Leamy, M.J., Ruzzene, M.: Multiple scales analysis of wave–wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63(1–2), 193–203 (2011)

  18. Marathe, A., Chatterjee, A.: Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales. J. Sound Vib. 289(45), 871–888 (2006)

    Article  Google Scholar 

  19. Lazarov, B.S., Jensen, J.S.: Low-frequency band gaps in chains with attached non-linear oscillators. Int. J. Non-Linear Mech. 42(10), 1186–1193 (2007)

    Article  Google Scholar 

  20. Boechler, N., Daraio, C., Narisetti, R.K., Ruzzene, M., Leamy, M.J.: Analytical and experimental analysis of bandgaps in nonlinear one dimensional periodic structures. In: Wu, T.-T., Ma, C.-C. (eds.) IUTAM Symposium on Recent Advances of AcousticWaves in Solids, volume 26 of IUTAM Bookseries, pp.209–219. Springer, Netherlands (2010)

  21. Theocharis, G., Boechler, N., Daraio, C.: Nonlinear periodic phononic structures and granular crystals. In: Deymier, Pierre A. (ed.) Acoustic Metamaterials and Phononic Crystals, volume 173 of Springer Series in Solid-State Sciences, pp. 217–251. Springer, Berlin (2013)

    Google Scholar 

  22. Heinrich, Georg, Ludwig, Max, Qian, Jiang, Kubala, Björn, Marquardt, Florian: Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011)

    Article  Google Scholar 

  23. Slusher, R.E., Eggleton, B.J.: Nonlinear Photonic Crystals. Physics and Astronomy Online Library. Springer, Berlin (2003)

    Book  Google Scholar 

  24. Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large dc-voltages. Nonlinear Dyn. 67(1), 1–36 (2012)

    Article  MATH  Google Scholar 

  25. Lifshitz, R., Cross, M.C.: Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  26. Nayfeh, A.H., Zavodney, L.D.: The response of two-degree-of-freedom systems with quadratic non-linearities to a combination parametric resonance. J. Sound Vib. 107(2), 329–350 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nayfeh, A.H.: The response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric resonance. J. Sound Vib. 90(2), 237–244 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lifshitz, R., Cross, M.C.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67, 134302 (2003)

  29. Perkins, E., Balachandran, B.: Noise-enhanced response of nonlinear oscillators. Procedia IUTAM 5:59–68, 2012. IUTAM Symposium on 50 Years of Chaos: Applied and Theoretical

  30. Kacem, N., Baguet, S., Dufour, R., Hentz, S.: Stability control of nonlinear micromechanical resonators under simultaneous primary and superharmonic resonances. Appl. Phys. Lett. 98(19), 193507 (2011)

  31. Nguyen, Hai: Simultaneous resonances involving two mode shapes of parametrically-excited rectangular plates. J. Sound Vib. 332(20), 5103–5114 (2013)

    Article  Google Scholar 

  32. Plaut, R.H., HaQuang, N., Mook, D.T.: Simultaneous resonances in non-linear structural vibrations under two-frequency excitation. J. Sound Vib. 106(3), 361–376 (1986)

  33. Cochelin, B.: A path-following technique via an asymptotic-numerical method. Comput. Struct. 53, 1181–1192 (1994)

    Article  MATH  Google Scholar 

  34. Buks, Eyal, Roukes, Michael L.: Electrically tunable collective response in a coupled micromechanical array. J. Microelectromech. Syst. 11(6), 802–807 (2002)

  35. Karkar, S., Arquier, R., Cochelin, B., Vergez, C., Thomas O., Lazarus, A.: MANLAB 2.0: An interactive software for computing periodic solutions, their stability and bifurcations. (2010)

  36. Vannucci, P., Cochelin, B., Damil, N., Potier-Ferry, M.: An asymptotic-numerical method to compute bifurcating branches. Int. J. Numer. Methods Eng. 41(8), 1365–1389 (1998)

    Article  MATH  Google Scholar 

  37. Abed, I., Kacem, N., Bouazizi, M.L., Bouhaddi, N.: Nonlinear 2-dofs vibration energy harvester based on magnetic levitation. In: Wicks, A. (ed.) Shock and Vibration, Aircraft/Aerospace, and Energy Harvesting, Volume 9, Conference Proceedings of the Society for Experimental Mechanics Series, pp 39–45. Springer International Publishing, Berlin (2015)

  38. Kacem, N., Arcamone, J., Perez-Murano, F., Hentz, S.: Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for high sensitive NEMS gas/mass sensors applications. J. Micromech. Microeng. 20(4), 045023 (2010)

  39. Kozinsky, H. W. C., Postma, I., Kogan, A., Husain, O., Roukes, M. L.: Basins of attraction of a nonlinear nanomechanical resonator. Phys. Rev. Lett. 99(20), 207201 (2007)

  40. liwa, I., Grygiel, K.: Periodic orbits, basins of attraction and chaotic beats in two coupled Kerr oscillators. Nonlinear Dyn. 67(1), 755–765 (2012)

  41. Ruzziconi, Laura, Younis, M.I., Lenci, Stefano: Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dyn. 74(3), 533–549 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nguyen, V.-N., Baguet, S., Lamarque, C.-H., Dufour, R.: Bifurcation-based micro-/nanoelectromechanical mass detection. Nonlinear Dyn. 79(1), 647–662 (2015)

    Article  Google Scholar 

  43. Soliman, M.S., Thompson, J.M.T.: Integrity measures quantifying the erosion of smooth and fractal basins of attraction. J. Sound Vib. 135(3), 453–475 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lenci, S., Rega, G.: Competing dynamic solutions in a parametrically excited pendulum: attractor robustness and basin integrity. J. Comput. Nonlinear Dyn. 3(4), 041010 (2008)

  45. Rega, G., Lenci, S.: Identifying, evaluating, and controlling dynamical integrity measures in non-linear mechanical oscillators. Nonlinear Anal. Theory Methods Appl. 63(57):902–914 (2005). Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004) Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004)

  46. Rega, Giuseppe, Lenci, Stefano: Dynamical integrity and control of nonlinear mechanical oscillators. J. Vib. Control 14(1–2), 159–179 (2008)

    Article  MATH  Google Scholar 

  47. Kenig, Eyal, Malomed, Boris A., Cross, M.C., Lifshitz, R.: Intrinsic localized modes in parametrically driven arrays of nonlinear resonators. Phys. Rev. E 80, 046202 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This project has been performed in cooperation with the Labex ACTION program (contract ANR-11-LABX-01-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diala Bitar.

Appendices

Appendix 1

Substituting Eq. (5) into the EOM term by term. Up to the order \(\varepsilon ^{\frac{3}{2}}\), we obtain:

$$\begin{aligned}&(u_{n+1}-2u_{n}+u_{n-1})\\&\quad =\,-4\varepsilon ^{\frac{1}{2}} \sum _{m=1}^{N}\sin ^{2}\left( \frac{q_{m}}{2}\right) \sin (n q_{m})(A_{m}e^{i\omega _{m}t}+c.c.)\\&\qquad \quad +\,\varepsilon ^{\frac{3}{2}}(u_{n+1}^{(1)}-2u_{n}^{(1)}+u_{n-1}^{(1)}),\\&u_{n}^{3}\!=\!\frac{\varepsilon ^{\frac{3}{2}}}{4}\!\! \sum _{j,k,l}\{T^{(-j,k,l)}\!+\!T^{(j,-k,l)}\!+\!T^{(j,k,-l)}\!-\!T^{(j,k,l)}\}\\&\qquad \quad \times \, \{A_{j}A_{k}A_{l}e^{i(\omega _{j}+\omega _{k}+\omega _{l})t}\\&\qquad \quad +\,3A_{j}A_{k}A_{l}^{*}e^{i(\omega _{j}+\omega _{k}-\omega _{l})t}+c.c.\},\\&u_{n}^{2}\dot{u}_{n}= 4 \varepsilon ^{\frac{3}{2}}\sum _{j,k,l}\{T^{(-j,k,l)}\\&\qquad \quad +T^{(j,-k,l)}+ T^{(j,k,-l)}-T^{(j,k,l)}\}\\&\qquad \qquad \times \, (A_{j}e^{i\omega _{j}t}+c.c.)(A_{k}e^{i\omega _{k}t}+c.c.)\\&\qquad \qquad \times (i\omega _{l}A_{l}e^{i\omega _{l}t}+c.c.),\\&[(u_{n}-u_{n+1})^{3}+(u_{n}-u_{n-1})^{3}]\\&\quad =\, 4 \varepsilon ^{\frac{3}{2}}\sum _{j,k,l}\varPi _{j, k, l} \{ S^{(-j,k,l)}+S^{(j,-k,l)}\\&\quad \quad + S^{(j,k,-l)}+S^{(j,k,l)}\} \\&\quad \quad \times \, \{A_{j}A_{k}A_{l}e^{i(\omega _{j}+\omega _{k}+\omega _{l})t}\\&\quad \quad +3A_{j}A_{k}A_{l}^{*}e^{i(\omega _{j}+\omega _{k}-\omega _{l})t}+c.c.\},\\&[(u_{n}\!-\!u_{n+1})^{2}(\dot{u}_{n}\!-\!\dot{u}_{n+1})\!+\! (u_{n}\!-\!u_{n-1})^{2}(\dot{u}_{n}\!-\!\dot{u}_{n-1})]\\&\quad =\, \frac{\varepsilon ^{\frac{3}{2}}}{4} \sum _{j,k,l}\varPi _{j, k, l} \{ S^{(-j,k,l)}+S^{(j,-k,l)}\\&\qquad \quad +\, S^{(j,k,-l)}+S^{(j,k,l)}\} \\&\qquad \quad \times \, (A_{j}e^{i\omega _{j}t}\!+\!c.c.)(A_{k}e^{i\omega _{k}t}\!+\!c.c.)(i\omega _{l}A_{l}e^{i\omega _{l}t}\!+\!c.c.), \end{aligned}$$

with:

$$\begin{aligned}&T^{(j,k,l)}=\sin [n (sgn(j)q_{j}+sgn(k)q_{k}+sgn(l)q_{l})]\\&S^{(j,k,l)}\!=\!\sin \!\left[ \frac{sgn(j)q_{j}\!+\!sgn(k)q_{k}\!+\!sgn(l)q_{l}}{2}\right] T^{(j,k,l)}\\&\varPi _{j, k,l}=\sin \left( \frac{q_{j}}{2}\right) \sin \left( \frac{q_{k}}{2}\right) \sin \left( \frac{q_{l}}{2}\right) \end{aligned}$$

Appendix 2

The two delta functions, defined in terms of Kronecker deltas are:

$$\begin{aligned}&\varDelta _{jkl;m}^{(1)}\!=\! \delta _{-j+k+l,m}\!-\!\delta _{-j+k+l,m}\!-\!\delta _{-j+k+l,2(N+1)-m}\\&\quad +\,\delta _{j-k+l,m}-\delta _{j-k+l,m}-\delta _{j-k+l,2(N+1)-m} \\&\quad +\,\delta _{j+k-l,m}-\delta _{j+k-l,m}-\delta _{j+k-l,2(N+1)-m} \\&\quad -\,\delta _{j+k+l,m}+\delta _{j+k+l,2(N+1)-m}-\delta _{j+k+l,2(N+1)+m} \end{aligned}$$

and

$$\begin{aligned}&\varDelta _{jkl;m}^{(2)}\!=\!\delta _{-j+k+l,m}\!+\!\delta _{-j+k+l,m}\!+\!\delta _{-j+k+l,2(N+1)-m}\\&\quad +\,\delta _{j-k+l,m}+\delta _{j-k+l,m}-\delta _{j-k+l,2(N+1)-m} \\&\quad +\,\delta _{j+k-l,m}+\delta _{j+k-l,m}-\delta _{j+k-l,2(N+1)-m} \\&\quad +\,\delta _{j+k+l,m}-\delta _{j+k+l,2(N+1)-m}-\delta _{j+k+l,2(N+1)+m} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitar, D., Kacem, N., Bouhaddi, N. et al. Collective dynamics of periodic nonlinear oscillators under simultaneous parametric and external excitations. Nonlinear Dyn 82, 749–766 (2015). https://doi.org/10.1007/s11071-015-2194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2194-y

Keywords

Navigation