Skip to main content
Log in

Geodesic distance on Gaussian manifolds for the robust identification of chaotic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The identification of chaotic systems and their dynamical properties, from the embedding dimension to the Lyapunov exponents, is always based on the definition of a distance. The metric adopted for this distance can influence significantly the obtained results, particularly in the case of experimental data, which are always affected by noise and can include outliers. In this paper, we propose to adopt a metric explicitly developed for the analysis of experimental data typically corrupted by additive Gaussian noise. This metric is the geodesic distance on Gaussian manifolds (GDGM). A series of numerical tests prove that the GDGM provides qualitatively better results than the Euclidean distance, traditionally used in most applications. The GDGM can much better counteract the effects of noise providing systematically improved estimates of the dynamical quantities. An improvement of almost a factor of two in the estimates of the basic dynamical quantities can be achieved even for low levels of noise. The application to videos confirms the great potential of the proposed metric also for the analysis of higher-dimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rényi, A.: Probability theory (appendix). North-Holland, (1970)

  2. Arwini, K., Dodson, T.J.: Information Geometry: Near Randomness and Near Independence (Lecture Notes in Mathematics). Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  3. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  4. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403 (1992)

    Article  Google Scholar 

  5. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D: Nonlinear Phenom. 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  8. Gao, J.B., Cai, H.Q.: On the structures and quantification of recurrence plots. Phys. Lett. A 270, 75–87 (2000)

    Article  Google Scholar 

  9. Gao, J.B., Cao, Y., Gu, L., Harris, J.G., Principe, J.C.: Detection of weak transitions in signal dynamics using recurrence time statistics. Phys. Lett. A 317, 64–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, J.B.: Recurrence time statistics for chaotic systems and their applications. Phys. Rev. Lett. 83, 3178 (1999)

    Article  Google Scholar 

  11. Mindlin, G.M., Gilmore, R.: Topological analysis and synthesis of chaotic time series. Phys. D 58, 229–242 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zbilut, J.P., Webber Jr., C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171, 199–203 (1992)

    Article  Google Scholar 

  13. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E 66, 026702 (2002)

    Article  MATH  Google Scholar 

  14. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: A Comprehensive Bibliography about RPs, RQA And Their Applications, http://www.recurrence-plot.tk/bibliography.php. Accessed 11 Feb 2016

  15. Schinkel, S., Dimigen, O., Marwan, N.: Selection of recurrence threshold for signal, detection. Eur. Phys. J. Spec. Top. 164, 45–53 (2008)

    Article  Google Scholar 

  16. Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 5, 973–977 (1987)

    Article  Google Scholar 

  17. Trulla, L.L., Giuliani, A., Zbilut, J.P., Webber Jr., C.L.: Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 223, 255–260 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Atay, F.M., Altıntas, Y.: Recovering smooth dynamics from time series with the aid of recurrence plots. Phys. Rev. E 59, 6593–6598 (1999)

    Article  Google Scholar 

  19. Thiel, M., Romano, M.C., Read, P.L., Kurths, J.: Estimation of dynamical invariants without embedding by recurrence plots. Chaos 14, 234–243 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grassberger, P.: Generalized dimensions of strange attractors. Phys. Lett. 97, 227–230 (1983)

    Article  MathSciNet  Google Scholar 

  21. Marwan, N., Webber Jr., C.L.: Mathematical and computational foundations of recurrence quantifications. In: Webber Jr., C.L., Marwan, N. (eds.) Recurrence Quantification Analysis: Theory and Best Practices. Springer, Berlin (2015)

    Google Scholar 

  22. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 9, 2591–2593 (1983)

    Article  MathSciNet  Google Scholar 

  23. Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  24. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  25. Marwan, N., Kurths, J.: Complex network based techniques to identify extreme events and (sudden) transitions in spatio-temporal systems. Chaos 25, 097609 (2015)

    Article  MathSciNet  Google Scholar 

  26. Marwan, N., Donges, J.F., Zou, Y., Donner, R.V., Kurths, J.: Complex network approach for recurrence analysis of time series. Phys. Lett. A 373(46), 4246–4254 (2009)

    Article  MATH  Google Scholar 

  27. Malik, N., Bookhagen, B., Marwan, N., Kurths, J.: Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Clim. Dyn. 39, 971–987 (2012)

    Article  Google Scholar 

  28. Boers, N., Bookhagen, B., Marwan, N., Kurths, J., Marengo, J.: Complex networks identify spatial patterns of extreme rainfall events of the South American monsoon system. Geophys. Res. Lett. 40, 4386–4392 (2013)

    Article  Google Scholar 

  29. McNames, J.: Local averaging optimization for chaotic time series prediction. Neurocomputing 48, 279–298 (2002)

    Article  MATH  Google Scholar 

  30. Tanaka, N., Okamoto, H., Naito, M.: An optimal metric for predicting chaotic time series. Jpn. J. Appl. Phys. 34, 388–394 (1995)

    Article  Google Scholar 

  31. Garcia, P., Jumenez, J., Marcano, A., Moleiro, F.: Local optimal metrics and nonlinear modeling of time series. Phys. Rev. Lett. 76, 1449–1452 (1996)

    Article  Google Scholar 

  32. Farmer, J.D., Sidorowich, J.J.: Exploiting chaos to predict the future and reduce noise. In: Lee, Y.C. (ed.) Evolution, Learning and Cognition, pp. 277–330. World Scientific, Singapore (1988)

    Google Scholar 

  33. Murray, D.B.: Forecasting a chaotic time series using an improved metric for embedding space. Phys. D 68, 318–325 (1993)

    Article  MATH  Google Scholar 

  34. Haario, H., Kalachev, L., Hakkarainen, J.: Generalized correlation integral vectors: a new distance concept for chaotic dynamical systems. Chaos 25(6), 063102 (2015)

    Article  MathSciNet  Google Scholar 

  35. Rivera-Durón, R.R., Campos-Cantón, E., Campos-Cantón, I., Gauthier, D.J.: Forced synchronization of autonomous dynamical Boolean networks. Chaos 25, 083113 (2015)

    Article  MathSciNet  Google Scholar 

  36. Gilmore, R.: Topological analysis of chaotic dynamical systems. Rev. Mod. Phys. 70, 1455–1529 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sotolongo-Costa, O., San-Martin, J.: Chaos and non-Archimedean metric in the Bernoulli Map. Rev. Cuba. Fis. 20, 35–38 (2003)

    Google Scholar 

  38. Burbea, J., Rao, C.R.: Entropy differential metric, unified approach. J. Multivar. Anal. 12, 575–596 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. J. Nonlinear Sci. 1, 175–199 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. 57A, 397–398 (1976)

    Article  Google Scholar 

  42. Sano, M., Sawada, Y.: Measurement of Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55, 1082–1085 (1985)

    Article  MathSciNet  Google Scholar 

  43. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys D 110, 43–50 (1997)

    Article  MATH  Google Scholar 

  44. Cao, L.: CRP toolbox for Matlab, http://tocsy.agnld.uni-potsdam.de. Accessed 11 Feb 2016

  45. Verdoolaege, G., Scheunders, P.: On the geometry of multivariate generalized Gaussian models. J. Math. Imaging Vis 43–3, 180–193 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Marwan, N., Kurths, J.: Generalised recurrence plot analysis for spatial data. Phys. Lett. A 360, 545–551 (2007)

    Article  Google Scholar 

  47. Facchini, A., Mocenni, C., Vicino, A.: Generalized recurrence plots for the analysis of images from spatially distributed systems. Phys. D 238, 162–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Salicone, S.: Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence, Springer Series in Reliability Engineering. Springer (2007)

  49. Rattá, G.A., Vega, J., Murari, A., Vagliasindi, G., Johnson, M.F., de Vries, P.C.: An advanced disruption predictor for JET tested in a simulated real-time environment. Nucl. Fusion. 50, 025005 (2010)

    Article  Google Scholar 

  50. Cannas, B., Fanni, A., Sonato, P.: A prediction tool for real-time application in the disruption protection system at JET. Nucl. Fusion 53, 093023 (2007)

    Article  Google Scholar 

  51. Murari, A., Boutot, P., Vega, J., Gelfusa, M., Moreno, R., Verdoolaege, G., de Vries, P.C.: Clustering based on the geodesic distance on Gaussian manifolds for the automatic classification of disruptions. Nucl. Fusion 53, 033006 (2013)

    Article  Google Scholar 

  52. Vega, J., Murari, A., Vagliasindi, G., Rattá, G.A.: Automated estimation of L/H transition times at JET by combining Bayesian statistics and support vector machines. Nucl. Fusion. 49, 085023 (2009)

    Article  Google Scholar 

  53. Murari, A., Vega, J., Rattá, G.A., Vagliasindi, G., Johnson, M.F., Hong, S.H.: Unbiased and non-supervised learning methods for disruption prediction at JET. Nucl. Fusion 49, 055028 (2009)

    Article  Google Scholar 

  54. Murari, A., Peluso, E., Gelfusa, M., Garzotti, L., Frigione, D., Lungaroni, M., Pisano, F., Gaudio, P.: Application of transfer entropy to causality detection and synchronization experiments in tokamaks. Nucl. Fusion 56, 026006 (2016)

    Article  Google Scholar 

  55. Zhang, R., Chen, D., Younghae, D., Ma, X.: Synchronization and anti-synchronization of fractional dynamical networks. J. Vib. Control 21, 3383–3402 (2015)

    Article  MathSciNet  Google Scholar 

  56. Chen, D., Zhang, R., Liu, X., Ma, X.: Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. Commun. Nonlinear. Sci. 19(12), 4105–4121 (2014)

    Article  MathSciNet  Google Scholar 

  57. Chen, D., Zhamg, R., Ma, X., Lu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dyn. 69(1–2), 35–55 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

One of the authors (TC) acknowledges the financial support received from the PN16470104 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Craciunescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craciunescu, T., Murari, A. Geodesic distance on Gaussian manifolds for the robust identification of chaotic systems. Nonlinear Dyn 86, 677–693 (2016). https://doi.org/10.1007/s11071-016-2915-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2915-x

Keywords

Navigation