Skip to main content
Log in

Suppression of Hopf bifurcation in metal cutting by extrusion machining

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Hopf bifurcation is a common phenomenon during the metal cutting process, which results in poor surface finish of the workpiece and inhomogeneous grain structure in materials. Therefore, understanding and controlling Hopf bifurcation in metal cutting are necessary. In this work, the systematic low-speed extrusion machining experiments were conducted to suppress Hopf bifurcation phenomenon. It is found that the suppression of Hopf bifurcation is achieved with the increasing constraint extrusion degree. In order to reveal the mechanism of the suppression of Hopf bifurcation, a new nonlinear dynamic model for extrusion machining is developed where the convection, the diffusion, the extrusion of constraint, the thermal-softening deformation and the fracture-type damage are included. The theoretical predictions are in agreement with the experimental results; therefore, the present theoretical model is effective to characterize the suppression of Hopf bifurcation in metal cutting. Based on the numerical calculation of the theoretical model, the mechanisms underlying in extrusion machining are further revealed: Fracture-type deformation is more important than the thermal-softening-type deformation in low-speed extrusion machining; however, the thermal-softening-type deformation is the primary deformation mode for high-speed extrusion machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Shaw, M.C.: Metal Cutting Principles, 2nd edn. Oxford University Press, Oxford (2005)

    Google Scholar 

  2. Brown, T.L., Swaminathan, S., Chandrasekar, S., Compton, W.D., King, A.H., Trumble, K.P.: Low-cost manufacturing process for nanostructured metals and alloys. J. Mater. Res. 17(10), 2484–2488 (2002). doi:10.1557/jmr.2002.0362

    Article  Google Scholar 

  3. Cai, S.L., Chen, Y., Ye, G.G., Jiang, M.Q., Wang, H.Y., Dai, L.H.: Characterization of the deformation field in large-strain extrusion machining. J. Mater. Process. Technol. 216, 48–58 (2015). doi:10.1016/j.jmatprotec.2014.08.022

    Article  Google Scholar 

  4. Liu, Y., Cai, S., Dai, L.: A new method for grain refinement in magnesium alloy: high speed extrusion machining. Mater. Sci. Eng. A 651, 878–885 (2016). doi:10.1016/j.msea.2015.11.046

    Article  Google Scholar 

  5. Otto, A., Radons, G.: The influence of tangential and torsional vibrations on the stability lobes in metal cutting. Nonlinear Dyn. 82(4), 1989–2000 (2015). doi:10.1007/s11071-015-2293-9

    Article  Google Scholar 

  6. Deng, W.J., Xia, W., Li, C., Tang, Y.: Formation of ultra-fine grained materials by machining and the characteristics of the deformation fields. J. Mater. Process. Technol. 209(9), 4521–4526 (2009). doi:10.1016/j.jmatprotec.2008.10.043

    Article  Google Scholar 

  7. Recht, R.F.: Catastrophic thermoplastic shear. J. Appl. Mech. 31(2), 189–193 (1964)

    Article  Google Scholar 

  8. Semiatin, S.L., Rao, S.B.: Shear localization during metal cutting. Mater. Sci. Eng. 61(2), 185–192 (1983). doi:10.1016/0025-5416(83)90200-8

    Article  Google Scholar 

  9. Molinari, A., Dudzinski, D.: Stationary shear band in high-speed machining. C. R. Acad. Sci. Ser. 315(4), 399–405 (1992)

    MATH  Google Scholar 

  10. Burns, T.J., Davies, M.A.: Nonlinear dynamics model for chip segmentation in machining. Phys. Rev. Lett. 79(3), 447–450 (1997). doi:10.1103/PhysRevLett.79.447

    Article  Google Scholar 

  11. Burns, T.J., Davies, M.A.: On repeated adiabatic shear band formation during high-speed machining. Int. J. Plast. 18(4), 487–506 (2002). doi:10.1016/s0749-6419(01)00006-7

    Article  MATH  Google Scholar 

  12. Huang, J., Aifantis, E.C.: A note on the problem of shear localization during chip formation in orthogonal machining. J. Mater. Eng. Perform. 6(1), 25–26 (1997). doi:10.1007/s11665-997-0027-y

    Article  Google Scholar 

  13. Huang, J., Kalaitzidou, K., Sutherland, J.W., Aifantis, E.C.: Validation of a predictive model for adiabatic shear band formation in chips produced via orthogonal machining. J. Mech. Behav. Mater. 18(4), 243–263 (2007)

    Article  Google Scholar 

  14. Molinari, A., Soldani, X., Miguélez, M.H.: Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti–6Al–4V. J. Mech. Phys. Solids 61(11), 2331–2359 (2013). doi:10.1016/j.jmps.2013.05.006

    Article  Google Scholar 

  15. Hanna, N.H., Tobias, S.A.: A theory of nonlinear regenerative chatter. ASME J. Eng. Ind. 96, 247–255 (1974)

    Article  Google Scholar 

  16. Shi, H.M., Tobias, S.A.: Theory of finite amplitude machine tool instability. Int. J. Mach. Tool Des. Res. 24, 45–69 (1984)

    Article  Google Scholar 

  17. Nayfeh, A.H., Chin, C.M., Pratt, J.R.: Perturbation methods in nonlinear dynamics: applications to machining dynamics. J. Manuf. Sci. Eng. 119, 485–493 (1997)

    Article  Google Scholar 

  18. Pratt, J.R., Nayfeh, A.H.: Design and modeling for chatter control. Nonlinear Dyn. 19, 49–69 (1999)

    Article  MATH  Google Scholar 

  19. Kalmár-Nagy, T., Stépán, G., Moon, F.C.: Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26(2), 121–142 (2001). doi:10.1023/a:1012990608060

    Article  MathSciNet  MATH  Google Scholar 

  20. Nayfeh, A.H., Nayfeh, N.A.: Analysis of the cutting tool on a lathe. Nonlinear Dyn. 63(3), 395–416 (2010). doi:10.1007/s11071-010-9811-6

    Article  Google Scholar 

  21. Ren, Q., Baron, L., Balazinski, M.: Fuzzy identification of cutting acoustic emission with extended subtractive cluster analysis. Nonlinear Dyn. 67(4), 2599–2608 (2011). doi:10.1007/s11071-011-0173-5

    Article  Google Scholar 

  22. Moradi, H., Movahhedy, M.R., Vossoughi, G.: Bifurcation analysis of milling process with tool wear and process damping: regenerative chatter with primary resonance. Nonlinear Dyn. 70(1), 481–509 (2012). doi:10.1007/s11071-012-0470-7

    Article  MathSciNet  Google Scholar 

  23. Litak, G., Schubert, S., Radons, G.: Nonlinear dynamics of a regenerative cutting process. Nonlinear Dyn. 69(3), 1255–1262 (2012). doi:10.1007/s11071-012-0344-z

    Article  MathSciNet  Google Scholar 

  24. Elias, J., Namboothiri, V.N.N.: Cross-recurrence plot quantification analysis of input and output signals for the detection of chatter in turning. Nonlinear Dyn. 76(1), 255–261 (2013). doi:10.1007/s11071-013-1124-0

    Article  Google Scholar 

  25. Molnár, T.G., Insperger, T., Stépán, G.: State-dependent distributed-delay model of orthogonal cutting. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2559-2

    Google Scholar 

  26. Ye, G.G., Xue, S.F., Jiang, M.Q., Tong, X.H., Dai, L.H.: Modeling periodic adiabatic shear band evolution during high speed machining Ti–6Al–4V alloy. Int. J. Plast. 40, 39–55 (2013). doi:10.1016/j.ijplas.2012.07.001

    Article  Google Scholar 

  27. Molinari, A., Musquar, C., Sutter, G.: Adiabatic shear banding in high speed machining of Ti–6Al–4V: experiments and modeling. Int. J. Plast. 18(4), 443–459 (2002). doi:10.1016/s0749-6419(01)00003-1

    Article  MATH  Google Scholar 

  28. Efe, M., Moscoso, W., Trumble, K.P., Dale Compton, W., Chandrasekar, S.: Mechanics of LSEM and application to deformation processing of magnesium alloys. Acta Mater. 60(5), 2031–2042 (2012). doi:10.1016/j.actamat.2012.01.018

    Article  Google Scholar 

  29. Shankar, M.R., Rao, B.C., Lee, S., Chandrasekar, S., King, A.H., Compton, W.D.: Severe plastic deformation (SPD) of titanium at near-ambient temperature. Acta Mater. 54(14), 3691–3700 (2006). doi:10.1016/j.actamat.2006.03.056

    Article  Google Scholar 

  30. Sheikh-Ahmad, J.Y., Quarless, V., Bailey, J.A.: On the role of microcracks on flow instability in low speed machining of CP titanium. Mach. Sci. Technol. 8(3), 415–430 (2004). doi:10.1081/lmst-200039867

    Article  Google Scholar 

  31. Cai, S.L., Dai, L.H.: Suppression of repeated adiabatic shear banding by dynamic large strain extrusion machining. J. Mech. Phys. Solids 73, 84–102 (2014). doi:10.1016/j.jmps.2014.09.004

    Article  Google Scholar 

  32. De Chiffre, L.: Extrusion-cutting. Int. J. Mach. Tool Des. Res. 16(2), 137–144 (1976). doi:10.1016/0020-7357(76)90032-9

    Article  Google Scholar 

  33. Oxley, P.L.B.: Mechanics of Machining: An Analytical Approach to Assessing Machinability. Wiley, New York (1989)

    Google Scholar 

  34. Wallace, D.C.: Irreversible thermodynamics of flow in solids. Phys. Rev. B 22, 1477–1786 (1980)

    Article  MathSciNet  Google Scholar 

  35. Taylor, G.I., Quinney, H.: The plastic distortion of metals. Philos. Trans. R. Soc. Lond. A 230, 323–362 (1931)

    Article  MATH  Google Scholar 

  36. Wright, T.W., Walter, J.W.: The asymptotic structure of an adiabatic shear band in antiplane motion. J. Mech. Phys. Solids 44(1), 77–97 (1996). doi:10.1016/0022-5096(95)00066-6

    Article  MathSciNet  MATH  Google Scholar 

  37. Bai, Y.L.: Thermo-plastic instability in simple shear. J. Mech. Phys. Solids 30(4), 195–207 (1982). doi:10.1016/0022-5096(82)90029-1

    Article  MATH  Google Scholar 

  38. Molinari, A.: Collective behavior and spacing of adiabatic shear bands. J. Mech. Phys. Solids 45(9), 1551–1575 (1997). doi:10.1016/s0022-5096(97)00012-4

    Article  MathSciNet  MATH  Google Scholar 

  39. Jiang, M.Q., Dai, L.H.: On the origin of shear banding instability in metallic glasses. J. Mech. Phys. Solids 57(8), 1267–1292 (2009). doi:10.1016/j.jmps.2009.04.008

    Article  MATH  Google Scholar 

  40. Dolinski, M., Rittel, D.: Experiments and modeling of ballistic penetration using an energy failure criterion. J. Mech. Phys. Solids 83, 1–18 (2015). doi:10.1016/j.jmps.2015.06.004

    Article  Google Scholar 

  41. Dolinski, M., Rittel, D., Dorogoy, A.: Modeling adiabatic shear failure from energy considerations. J. Mech. Phys. Solids 58(11), 1759–1775 (2010). doi:10.1016/j.jmps.2010.08.007

    Article  MATH  Google Scholar 

  42. Hillerborg, A., Modeer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–782 (1976)

  43. Zhang, Y.C., Mabrouki, T., Nelias, D., Gong, Y.D.: Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem. Anal. Des. 47(7), 850–863 (2011). doi:10.1016/j.finel.2011.02.016

    Article  Google Scholar 

  44. Merchant, M.E.: Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J. Appl. Phys. 16(6), 318–324 (1945)

    Article  Google Scholar 

  45. Merchant, M.E.: Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J. Appl. Phys. 16(5), 267–275 (1945)

    Article  Google Scholar 

  46. Sun, S., Brandt, M., Dargusch, M.S.: Characteristics of cutting forces and chip formation in machining of titanium alloys. Int. J. Mach. Tools Manuf. 49(7–8), 561–568 (2009). doi:10.1016/j.ijmachtools.2009.02.008

    Article  Google Scholar 

  47. Zhou, L., Peng, F.Y., Yan, R., Yao, P.F., Yang, C.C., Li, B.: Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int. J. Mach. Tools Manuf. 97, 29–41 (2015). doi:10.1016/j.ijmachtools.2015.07.001

    Article  Google Scholar 

  48. Sutter, G., List, G.: Very high speed cutting of Ti–6Al–4V titanium alloy: change in morphology and mechanism of chip formation. Int. J. Mach. Tools Manuf. 66, 37–43 (2013). doi:10.1016/j.ijmachtools.2012.11.004

    Article  Google Scholar 

  49. Davies, M.A., Burns, T.J.: Thermomechanical oscillations in material flow during high-speed machining. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1781), 821–846 (2001)

    Article  MATH  Google Scholar 

  50. Ye, G.G., Chen, Y., Xue, S.F., Dai, L.H.: Critical cutting speed for onset of serrated chip flow in high speed machining. Int. J. Mach. Tools Manuf. 86, 18–33 (2014). doi:10.1016/j.ijmachtools.2014.06.006

    Article  Google Scholar 

  51. Özel, T., Altan, T.: Determination of workpiece flow stress and friction at the chip-tool contact for high-speed cutting. Int. J. Mach. Tools Manuf. 40(1), 133–152 (2000). doi:10.1016/s0890-6955(99)00051-6

    Article  Google Scholar 

  52. Komanduri, R.: Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76(1), 15–34 (1982). doi:10.1016/0043-1648(82)90113-2

    Article  Google Scholar 

  53. Wang, Z.H., Hu, H.Y.: Robust stability test for dynamic systems with short delays by using padé approximation. Nonlinear Dyn. 18, 275–287 (1999)

    Article  MATH  Google Scholar 

  54. Wang, Z.H., Hu, H.Y.: Dimensional reduction for nonlinear time-delayed systems composed of stiff and soft substructures. Nonlinear Dyn. 25, 317–331 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhan, Z.Q., Zhu, J., Li, W.: Stability and bifurcation analysis in a FAST TCP model with feedback delay. Nonlinear Dyn. 70(1), 255–267 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, Y., Xu, D.: Chaotification of quasi-zero-stiffness system with time delay control. Nonlinear Dyn. 86, 353–368 (2016)

    Article  MathSciNet  Google Scholar 

  57. Zhang, X.J., Xiong, C.H., Ding, Y., Ding, H.: Updated numerical integration method for stability calculation of Mathieu equation with various time delays. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-3096-3

    Google Scholar 

  58. Korn, G.A., Korn, T.M.: Mathermatical Handbook for Scientists and Engineers. McGraw-Hill, New York (1961)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 11132011 and 11602236), Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-15-101A1), the Opening Fund of State Key Laboratory of Nonlinear Mechanics, China Postdoctoral Science Foundation (Grant No. 2016M591066), the National Basic Research Program of China (Grant No. 2012CB937500) and the CAS/SAFEA International Partnership Program for Creative Research Teams. We are very grateful to the anonymous reviewers for their helpful comments, which have improved our manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songlin Cai or Lanhong Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Cai, S., Shang, X. et al. Suppression of Hopf bifurcation in metal cutting by extrusion machining. Nonlinear Dyn 88, 433–453 (2017). https://doi.org/10.1007/s11071-016-3251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3251-x

Keywords

Navigation