Skip to main content
Log in

Non-stationary localized oscillations of an infinite string, with time-varying tension, lying on the Winkler foundation with a point elastic inhomogeneity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider non-stationary oscillations of an infinite string with time-varying tension. The string lies on the Winkler foundation with a point inhomogeneity (a concentrated spring of negative stiffness). In such a system with constant parameters (the string tension), under certain conditions a trapped mode of oscillation exists and is unique. Therefore, applying a non-stationary external excitation to this system can lead to the emergence of the string oscillations localized near the inhomogeneity. We provide an analytical description of non-stationary localized oscillations of the string with slowly time-varying tension using the asymptotic procedure based on successive application of two asymptotic methods, namely the method of stationary phase and the method of multiple scales. The obtained analytical results were verified by independent numerical calculations based on the finite difference method. The applicability of the analytical formulas was demonstrated for various types of external excitation and laws governing the varying tension. In particular, we have shown that in the case when the trapped mode frequency approaches zero, localized low-frequency oscillations with increasing amplitude precede the localized string buckling. The dependence of the amplitude of such oscillations on its frequency is more complicated in comparison with the case of a one-degree-of-freedom system with time-varying stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ursell, F.: Trapping modes in the theory of surface waves. Math. Proc. Camb. Philos. Soc. 47(2), 347–358 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kaplunov, J.: The torsional oscillations of a rod on a deformable foundation under the action of a moving inertial load. Izvestiya Akademii Nauk SSSR, MTT (Mechanics of Solids) 6, 174–177 (1986). (in Russian)

    Google Scholar 

  3. Abramian, A., Andreyev, V., Indeitsev, D.: The characteristics of the oscillations of dynamical systems with a load-bearing structure of infinite extent. Modelirovaniye v mekhanike 6(2), 3–12 (1992). (in Russian)

    Google Scholar 

  4. Kaplunov, J., Sorokin, S.: A simple example of a trapped mode in an unbounded waveguide. J. Acoust. Soc. Am. 97, 3898–3899 (1995)

    Article  Google Scholar 

  5. Abramyan, A., Indeitsev, D.: Trapping modes in a membrane with an inhomogeneity. Acoust. Phys. 44, 371–376 (1998)

    Google Scholar 

  6. Gavrilov, S.: The effective mass of a point mass moving along a string on a Winkler foundation. PMM J. Appl. Math. Mech. 70(4), 582–589 (2006)

    Article  MathSciNet  Google Scholar 

  7. Gavrilov, S., Indeitsev, D.: The evolution of a trapped mode of oscillations in a “string on an elastic foundation - moving inertial inclusion” system. PMM J. Appl. Math. Mech. 66(5), 825–833 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alekseev, V., Indeitsev, D., Mochalova, Y.: Vibration of a flexible plate in contact with the free surface of a heavy liquid. Tech. Phys. 47(5), 529–534 (2002)

    Article  Google Scholar 

  9. McIver, P., McIver, M., Zhang, J.: Excitation of trapped water waves by the forced motion of structures. J. Fluid Mech. 494, 141–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Indeitsev, D., Osipova, E.: Localization of nonlinear waves in elastic bodies with inclusions. Acoust. Phys. 50(4), 420–426 (2004)

    Article  Google Scholar 

  11. Porter, R.: Trapped waves in thin elastic plates. Wave Motion 45(1–2), 3–15 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaplunov, J., Nolde, E.: An example of a quasi-trapped mode in a weakly non-linear elastic waveguide. C. R. Méc. 336(7), 553–558 (2008)

    Article  Google Scholar 

  13. Motygin, O.: On trapping of surface water waves by cylindrical bodies in a channel. Wave Motion 45(7–8), 940–951 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nazarov, S.: Sufficient conditions on the existence of trapped modes in problems of the linear theory of surface waves. J. Math. Sci. 167(5), 713–725 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pagneux, V.: Trapped modes and edge resonances in acoustics and elasticity. In: Craster, R., Kaplunov, J. (eds.) Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism, pp. 181–223. Springer, Berlin (2013)

    Chapter  Google Scholar 

  16. Porter, R., Evans, D.: Trapped modes due to narrow cracks in thin simply-supported elastic plates. Wave Motion 51(3), 533–546 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gavrilov, S., Mochalova, Y., Shishkina, E.: Trapped modes of oscillation and localized buckling of a tectonic plate as a possible reason of an earthquake. In: Proceedings of the International Conference Days on Diffraction (DD), 2016, pp. 161–165. IEEE (2016). https://doi.org/10.1109/DD.2016.7756834

  18. Kaplunov, J., Rogerson, G., Tovstik, P.: Localized vibration in elastic structures with slowly varying thickness. Q. J. Mech. Appl. Math. 58(4), 645–664 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Indeitsev, D., Kuznetsov, N., Motygin, O., Mochalova, Y.: Localization of Linear Waves. St. Petersburg University, St. Petersburg (2007). (in Russian)

    Google Scholar 

  20. Indeitsev, D., Sergeev, A., Litvin, S.: Resonance vibrations of elastic waveguides with inertial inclusions. Tech. Phys. 45(8), 963–970 (2000)

    Article  Google Scholar 

  21. Indeitsev, D., Abramyan, A., Bessonov, N., Mochalova, Y., Semenov, B.: Motion of the exfoliation boundary during localization of wave processes. Dokl. Phys. 57(4), 179–182 (2012)

    Article  Google Scholar 

  22. Wang, C.: Vibration of a membrane strip with a segment of higher density: analysis of trapped modes. Meccanica 49(12), 2991–2996 (2014)

    Article  MATH  Google Scholar 

  23. Indeitsev, D., Kuklin, T., Mochalova, Y.: Localization in a Bernoulli-Euler beam on an inhomogeneous elastic foundation. Vestn. St. Petersburg Univ. Math. 48(1), 41–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Indeitsev, D., Gavrilov, S., Mochalova, Y., Shishkina, E.: Evolution of a trapped mode of oscillation in a continuous system with a concentrated inclusion of variable mass. Dokl. Phys. 61(12), 620–624 (2016)

    Article  Google Scholar 

  25. Gavrilov, S., Mochalova, Y., Shishkina, E.: Evolution of a trapped mode of oscillation in a string on the Winkler foundation with point inhomogeneity. In: Proceedings of the International Conference Days on Diffraction (DD), 2017, pp. 128–133. IEEE (2017). https://doi.org/10.1109/DD.2017.8168010

  26. Shishkina, E., Gavrilov, S., Mochalova, Y.: Non-stationary localized oscillations of an infinite Bernoulli–Euler beam lying on the Winkler foundation with a point elastic inhomogeneity of time-varying stiffness. J. Sound Vib. 440C, 174–185 (2019)

    Article  Google Scholar 

  27. Fedoruk, M.: The Saddle-Point Method. Nauka, Moscow (1977). (in Russian)

    Google Scholar 

  28. Nayfeh, A.: Introduction to Perturbation Techniques. Wiley, London (1993)

    MATH  Google Scholar 

  29. Nayfeh, A.: Perturbation Methods. Weily, London (1973)

    MATH  Google Scholar 

  30. Gao, Q., Zhang, J., Zhang, H., Zhong, W.: The exact solutions for a point mass moving along a stretched string on a Winkler foundation. Shock Vib. 2014, 136149 (2014)

    Google Scholar 

  31. Luongo, A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25, 133–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Abramyan, A., Vakulenko, S.: Oscillations of a beam with a time-varying mass. Nonlinear Dyn. 63(1–2), 135–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Abramian, A., van Horssen, W., Vakulenko, S.: On oscillations of a beam with a small rigidity and a time-varying mass. Nonlinear Dyn. 78(1), 449–459 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Abramian, A., van Horssen, W., Vakulenko, S.: Oscillations of a string on an elastic foundation with space and time-varying rigidity. Nonlinear Dyn. 88(1), 567–580 (2017)

    Article  MATH  Google Scholar 

  35. Vladimirov, V.: Equations of Mathematical Physics. Marcel Dekker, New York (1971)

    MATH  Google Scholar 

  36. Gavrilov, S.: Non-stationary problems in dynamics of a string on an elastic foundation subjected to a moving load. J. Sound Vib. 222(3), 345–361 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Feschenko, S., Shkil, N., Nikolenko, L.: Asymptotic Methods in Theory of Linear Differential Equations. North-Holland, Amsterdam (1967)

    Google Scholar 

  38. Donninger, R., Schlag, W.: Numerical study of the blowup/global existence dichotomy for the focusing cubic nonlinear Klein–Gordon equation. Nonlinearity 24(9), 2547–2562 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Strauss, W., Vazquez, L.: Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28(2), 271–278 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Strikwerda, J.: Finite Difference Schemes and Partial Differential Equations, vol. 88. SIAM, Philadelphia (2004)

    MATH  Google Scholar 

  41. Trangenstein, J.: Numerical Solution of Hyperbolic Partial Differential Equations. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. D.A. Indeitsev for useful and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Gavrilov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, S.N., Shishkina, E.V. & Mochalova, Y.A. Non-stationary localized oscillations of an infinite string, with time-varying tension, lying on the Winkler foundation with a point elastic inhomogeneity. Nonlinear Dyn 95, 2995–3004 (2019). https://doi.org/10.1007/s11071-018-04735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-04735-3

Keywords

Navigation