Skip to main content
Log in

Stability of fractional-order prey–predator system with time-delay and Monod–Haldane functional response

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the dynamics of a fractional-order delayed prey–predator system with Monod–Haldane response function. The model describes the interaction between prey and two populations of predator species: immature or juvenile and mature or adult predator. A single time delay is incorporated in the model to justify the gestation period of adult predator. The existence of solutions, steady states, and sufficient conditions to ensure the asymptotic stability of the steady states are investigated. Global stability around the interior equilibrium point by constructing the suitable Lyapunov functional is also investigated. The system displays Hopf bifurcation depending on the conversion coefficient (prey to immature predator) and time delay. The fractional-order derivatives in the model develop the stability results of solutions and improve the model behaviors. Finally, some numerical simulations are given to verify the success of derived theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A functional response is the rate at which predator species capture prey individuals.

  2. One definition of the stiffness is that the global accuracy of the numerical solution is determined by stability rather than local error, and implicit methods are more appropriate for it.

References

  1. Liu, Z., Tan, R.: Impulsive harvesting and stocking in a Monod–Haldane functional response prey–predator system. Chaos Solitons Fractals 34, 454–464 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tang, G., Tang, S., Cheke, R.A.: Global analysis of a holling type II prey–predator model with a constant prey refuge. Nonlinear Dyn. 76, 635–647 (2014)

    Article  MATH  Google Scholar 

  3. Zhang, Y., Zhang, Q., Yan, X.G.: Complex dynamics in a singular Leslie-Gower prey-predator bioeconomic model with time delay and stochastic fluctuations. Physica A 404, 180–191 (2014)

    Article  MathSciNet  Google Scholar 

  4. Rihan, F.A., Lakshmanan, S., Hashish, A.H., Rakkiyappan, R., Ahmed, E.: Fractional-order delayed prey–predator systems with holling type-II functional response. Nonlinear Dyn. 80, 777–789 (2015)

    Article  MATH  Google Scholar 

  5. Zhang, F., Zheng, C.: Positive periodic solutions for the neutral ratio-dependent prey-predator model. Comput. Math. Appl. 61, 2221–2226 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tripathi, J.P., Meghwani, S.S., Thakur, M., Abbas, S.: A modified leslie gower prey–predator interaction model and parameter identifiability. Commun. Nonlinear Sci. Numer. Simul. 54, 331–346 (2018)

    Article  MathSciNet  Google Scholar 

  7. Wang, W., Chen, L.: A prey-predator system with stage-structure for predator. Comput. Math. Appl. 33, 83–91 (1997)

    Article  MathSciNet  Google Scholar 

  8. Misra, O.P., Sinha, P., Singh, C.: Stability and bifurcation analysis of a prey–predator model with age based predation. Appl. Math. Modelling 37, 6519–6529 (2013)

    Article  MathSciNet  Google Scholar 

  9. Chakraborty, K., Das, S., Kar, T.K.: Optimal control of effort of a stage structured prey-predator fishery model with harvesting. Nonlinear Anal. RWA 12, 3452–3467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yongzhen, P., Changguo, L., Lansun, C.: Continuous and impulsive harvesting strategies in a stage-structured prey-predator model with time delay. Math. Comput. Simul. 79, 2994–3008 (2009)

    Article  MATH  Google Scholar 

  11. Khajanchi, S.: Modeling the dynamics of stage-structure prey–predator system with Monod–Haldane type response function. Appl. Math. Comput. 302, 122–143 (2017)

    MathSciNet  Google Scholar 

  12. Khajanchi, S., Banerjee, S.: Role of constant prey refuge on stage structure prey-predator model with ratio dependent functional response. Appl. Math. Comput. 314, 193–198 (2017)

    MathSciNet  Google Scholar 

  13. Rihan, F.A., Anwar, M.N.: Qualitative analysis of delayed SIR epidemic model with a saturated incidence rate. Int. J. Differ. Equ. 2012, 13 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rihan, F.A.: Sensitivity analysis of dynamic systems with time lags. J. Comput. Appl. Math. 151, 445–462 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bocharov, G., Rihan, F.A.: Numerical modelling in biosciences using delay differential equations. Comput. Appl. Math. 125, 183–199 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhao, H., Zhao, M.: Global hopf bifurcation analysis of an susceptible-infective-removed epidemic model incorporating media coverage with time delay. J. Biol. Dyn. 11, 8–24 (2016)

    Article  MathSciNet  Google Scholar 

  17. Xia, Y., Cao, J., Cheng, S.S.: Multiple periodic solutions of a delayed stage-structured prey–predator model with non-monotone functional responses. Appl. Math. Model. 31, 1947–1959 (2007)

    Article  MATH  Google Scholar 

  18. Liu, C., Zhang, Q., Huang, J.: Stability analysis of a harvested prey–predator model with stage structure and maturation delay. Math. Probl. Eng. 2013, 329592 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Lu, C., Chen, J., Fan, X., Zhang, L.: Dynamics and simulations of a stochastic Prey-Predator model with infinite delay and impulsive perturbations. J. Appl. Math. Comput. (2017). https://doi.org/10.1007/s12190-017-1114-3

  20. Gao, S., Chen, L., Teng, Z.: Hopf bifurcation and global stability for a delayed prey–predator system with stage structure for predator. Appl. Math. Comput. 202, 721–729 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Georgescu, P., Hsieh, Y.H.: Global dynamics of a prey–predator model with stage structure for the predator. SIAM J. Appl. Math. 67, 1379–1395 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, C., Zhang, Q., Zhang, X., Duan, X.: Dynamical behavior in a stage-structured differential-algebraic prey–predator model with discrete time delay and harvesting. J. Comput. Appl. Math. 231, 612–625 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations in North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  25. Ahmed, E., Elgazzar, A.S.: On fractional order differential equations model for nonlocal epidemics. Physica A 379, 607–614 (2007)

    Article  MathSciNet  Google Scholar 

  26. Chen, J., Li, C., Huang, T., Yang, X.: Global stabilization of memristor-based fractional-order neural networks with delay via output-feedback control. Mod. Phys. Lett. B 31, 1750031 (2017)

    Article  MathSciNet  Google Scholar 

  27. Rihan, F.A.: Numerical modeling of fractional-order biological systems. Abstr. Appl. Anal. 2013, 816803 (2013)

    Article  MathSciNet  Google Scholar 

  28. Rihan, F.A., Baleanu, D., Lakshmanan, S., Rakkiyappan, R.: On fractional SIRC model with salmonella bacterial infection. Abstr. Appl. Anal. 2014, 136263 (2014)

    Article  MathSciNet  Google Scholar 

  29. Yan, Y., Kou, C.: Stability analysis for a fractional differential model of HIV infection of cd4\(^{+}\) t-cells with time delay. Math. Comput. Simul. 82, 1572–1585 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Matouk, A.E., Elsadany, A.A., Ahmed, E., Agiza, H.N.: Dynamical behavior of fractional-order Hastings–Powell food chain model and its discretization. Commun. Nonlinear Sci. Numer. Simul. 27, 153–167 (2015)

    Article  MathSciNet  Google Scholar 

  31. PreethiLatha, V., Rihan, Fathalla A., Rakkiyappan, R., Velmurugan, G.: A fractional-order model for Ebola virus infection with delayed immune response on heterogeneous complex networks. J. Comput. Appl. Math. (2017). https://doi.org/10.1016/j.cam.2017.11.032

  32. Jun, D., Jun, Z.G., Yong, X., Hong, Y., Jue, W.: Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cognit. Neurodyn. 8, 167–175 (2014)

    Article  Google Scholar 

  33. Deshpande, A.S., Gejji, V.D., Sukale, Y.V.: On Hopf bifurcation in fractional dynamical systems. Chaos Solitons Fractals 98, 189–198 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, H.L., Zhang, L., Hu, C., Jiang, Y.L., Teng, Z.: Dynamical analysis of a fractional-order prey–predator model incorporating a prey refuge. J. Appl. Math. Comput. 54, 435–449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nosrati, K., Shafiee, M.: Dynamic analysis of fractional-order singular holling type-II prey–predator system. Appl. Math. Comput. 313, 159–179 (2017)

    MathSciNet  Google Scholar 

  37. Huang, C., Cao, J., Xiao, M., Alsaedi, A., Alsaadi, F.E.: Controlling bifurcation in a delayed fractional prey–predator system with incommensurate orders. Appl. Math. Comput. 293, 293–310 (2017)

    MathSciNet  Google Scholar 

  38. Ghaziani, R.K., Alidousti, J.: Stability analysis of a fractional order prey–predator system with nonmonotonic functional response. Comput. Methods Differ. Equ. 4, 151–161 (2016)

    MathSciNet  Google Scholar 

  39. Javidi, M., Nyamoradi, N.: Dynamic analysis of a fractional order prey–predator interaction with harvesting. Appl. Math. Modelling 37, 8946–8956 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The support of UAE University to execute this work is highly acknowledged and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajivganthi Chinnathambi or Fathalla A. Rihan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnathambi, R., Rihan, F.A. Stability of fractional-order prey–predator system with time-delay and Monod–Haldane functional response. Nonlinear Dyn 92, 1637–1648 (2018). https://doi.org/10.1007/s11071-018-4151-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4151-z

Keywords

Navigation