Skip to main content
Log in

Sommerfeld effect in an oscillator with a reciprocating mass

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of a non-ideally driven single-degree-of-freedom vibrating system will be explored in detail. The objective is to describe Sommerfeld effect in a reciprocating system. As such, the concerned vibrating system comprises a reciprocating system with all components fully enclosed within a housing/foundation. The foundation is equipped with flexible mountings that are designed to contain and isolate any large amplitude vibrations. The assembly is devoid of any inertia forces arising due to rotational imbalances. As a result, all structural vibrations are caused due to a net unbalanced reciprocating mass only. As stated earlier, the mechanism is powered by a non-ideal drive. As a result, the non-ideal source-system interaction leads to the so-called Sommerfeld effect and the associated nonlinear jump phenomenon. For suitable component parameters, the nature of jump will be first investigated analytically. For a vibrating system, a non-ideal drive may inhibit smooth passages through resonance. Apart from sustainability issues, this may severely compromise a machine’s safety and reliability aspects. To that end, the power requirement conditions for smooth transition through resonance will be derived. It is to be noted that the analytical study will exclusively pertain to steady-state solutions. As such, to inspect the transient nature of the system dynamics, the non-ideal system will be modeled with the help of bond graphs. Additionally, the mechanism will also be assembled on MSC-Adams to confirm the responses obtained from the bond graph model. The simulated responses will then be used to verify the analytical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sommerfeld, A.: Beiträge zum dynamischen ausbau der festigkeitslehe. Physikal Zeitschr 3, 266–286 (1902)

    MATH  Google Scholar 

  2. Kononenko, V.O.: Vibrating Systems with a Limited Power Supply. Iliffe Books Ltd, London (1969)

    Google Scholar 

  3. Blekman, I.I: Self-Synchronization of Certain Vibratory Devices. Engineering Transactions 16 (ASME PRESS Translations), Wayne State University, USA (1953)

  4. Evan-Iwanowski, R.M.: Resonance Oscillators in Mechanical Systems. Elsevier, New York (1976)

    MATH  Google Scholar 

  5. Dimentberg, M.F.: Statistical Dynamics of Nonlinear and Time Varying Systems. Wiley, New York (1988)

    MATH  Google Scholar 

  6. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  7. Blekhman, I.: Vibrational Mechanics—Nonlinear Dynamic Effects, General Approach, Applications. World Scientific, Singapore (2000)

    Book  Google Scholar 

  8. Fidlin, A.: Nonlinear Oscillations in Mechanical Engineering. Springer, New York (2006)

    Google Scholar 

  9. Balthazar, J.M., Rente, M.L., Mook, D.T., Weber, H.I.: Some observations on numerical simulations of a non-ideal dynamical system. In: Balthazar J.M., Mook D.T., Rosario J.M. (eds.) Nonlinear Dynamics, Chaos, Control and Their Applications to Engineering Sciences, vol. 1, pp. 97–104. Brazilian Society of Mechanical Sciences (ABCM), Rio de Janeiro (1997)

  10. Weber, H.I., Fenili, A., Belato, D., de Mattos, M.C., Wieczorek, S.: On vibrating systems with a limited power supply and their applications to engineering sciences. In: Honig, C.S. (ed.) 49th Brazilian Seminar of Mathematical Analysis, pp. 137–277. State University of Campinas, Campinas, SP (1999)

  11. Balthazar, J.M., Mook, D.T., Brasil, R.M.L.R.F., Weber, H.I., Fenili, A., Belato, D., Felix, J.L.P.: Recent results on vibrating problems with limited power supply. In: Awrejcewicz, J., Brabski, J., Nowakowski, J. (eds.) Sixth Conference on Dynamical Systems Theory and Applications, pp. 27–50. Lodz, Poland (2001a)

  12. Balthazar, J.M., Mook, D.T., Brasil, R.M.L.R.F., Fenili, A., Belato, D., Felix, J.L.P., Weber, H.I.: Recent results on vibrating problems with limited power supply. Meccanica 330(7), 1–9 (2002)

    Google Scholar 

  13. Balthazar, J.M., Brasil, R.M.L.R.F., Garzeri, F.J.: On non-ideal simple portal frame structural model: experimental results under a non-ideal excitation. Applied Mechanics and Materials 1(2), 51–58 (2004)

    Article  Google Scholar 

  14. Samantaray, A.K.: Steady state dynamics of a non-ideal rotor with internal damping and gyroscopic effects. Non-linear Dyn. 56(4), 443–451 (2009)

    Article  MATH  Google Scholar 

  15. Samantaray, A.K., Dasgupta, S.S., Bhattacharyya, R.: Sommerfeld effect in rotationally symmetric planar dynamical systems. Int. J. Eng. Sci. 48(1), 21–36 (2010)

    Article  Google Scholar 

  16. Quinn, D.D.: Resonant dynamics in a rotor dynamic system with nonlinear inertial coupling and shaft anisotropy. Nonlinear Dyn. 57(4), 623–633 (2009)

    Article  MATH  Google Scholar 

  17. Mukherjee, A., Karmakar, R., Samantaray, A.K.: Modelling of basic induction motors and source loading in rotor-motor systems with regenerative force field. Simul. Pract. Theory 7(5), 563–576 (1999)

    Article  Google Scholar 

  18. Samantaray, A.K.: On the non-linear phenomena due to source loading in rotor-motor systems. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 223(4), 809–818 (2009)

    Article  Google Scholar 

  19. Cveticanin, L.: Dynamics of the non-ideal mechanical systems: a review. J. Serbian Soc. Comput. Mech. 4, 75–86 (2010)

    Google Scholar 

  20. Karthikeyan, M., Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect characterization in rotors with non-ideal drive from ideal drive response and power balance. Mech. Mach. Theory 91, 269–288 (2015)

    Article  Google Scholar 

  21. Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect in gyroscopic overhung rotor-disk system. Nonlinear Dyn. 88(3), 1565–1585 (2017)

    Article  Google Scholar 

  22. Cveticanin, L., Zukovic, M., Balthazar, J.M.: Dynamics of Mechanical Systems with Non-Ideal Excitations. Springer, Cham (2017)

    MATH  Google Scholar 

  23. Dasgupta, S.S., Rajan, J.A.: Steady-state and transient responses of a flexible eccentric spinning Shaft. FME Trans. 46, 133–137 (2018)

    Article  Google Scholar 

  24. Bisoi, A., Bhattacharyya, R., Samantaray, A.K.: Speed control of 3-phase induction motor in presence of Sommerfeld effect. In: Beran, J., Bílek, M., Žabka, P. (eds.) Advances in Mechanism Design II, vol. 44. Springer, Cham (2017)

    Chapter  Google Scholar 

  25. Fidlin, A., Drozdetskaya, O.: On the averaging in strongly damped systems: the general approach and its application to asymptotic analysis of the Sommerfeld effect. Procedia IUTAM 19, 43–52 (2016)

    Article  Google Scholar 

  26. Fidlin, A., Lobos, M.: On the limiting of vibrations amplitudes by a sequential friction-spring element. J. Sound Vib. 333, 5970–5979 (2014)

    Article  Google Scholar 

  27. Balthazar, J.M., Cheshankov, B.I., Rushev, D.T., Barbanti, L., Weber, H.I.: Remarks on the passage through resonance of a vibrating system, with two degree of freedom. J. Sound Vib. 239(5), 1075–1085 (2001)

    Article  MATH  Google Scholar 

  28. Balthazar, J.M., Mook, D.T., Weber, H.I., Brasil, R.M.L.R.F., Fenili, A., Belato, D., Felix, J.L.P.: An overview on non-ideal vibrations. Meccanica 38, 613–621 (2003)

    Article  MATH  Google Scholar 

  29. Eckert, M.: The Sommerfeld effect: theory and history of a remarkable resonance phenomenon. Eur. J. Phys. 17(5), 285–289 (1996)

    Article  Google Scholar 

  30. Wauer, J., Suherman, S.: Vibration suppression of rotating shafts passing through resonances by switching shaft stiffness. J. Vib. Acoust. 120, 170–180 (1997)

    Article  Google Scholar 

  31. Frolov, K.V., Krasnopol’skaya, T.S.: Sommerfeld effect in systems without internal damping. Prikladnaya Mekhanika 23(12), 19–24 (1987)

    MATH  Google Scholar 

  32. Munteanu, L., Brişan, C., Chiroiu, V., et al.: Chaos-hyperchaos transition in a class of models governed by Sommerfeld effect. Nonlinear Dyn. 78(3), 1877–1889 (2014)

    Article  MathSciNet  Google Scholar 

  33. Alışverişçi, G.F., Bayıroğlu, H., Ünal, G.: Nonlinear response of vibrational conveyers with non-ideal vibration exciter: primary resonance. Nonlinear Dyn. 69(4), 1611–1619 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. De Souza, S.L.T., Caldas, I.L., Viana, R.L., Balthazar, J.M., Brasil, R.M.L.R.F.: Impact dampers for controlling chaos in systems with limited power supply. J. Sound Vib. 279(3–5), 955–967 (2005)

    Article  Google Scholar 

  35. Piccirillo, V., Tusset, A.M., Balthazar, J.M.: Dynamical jump attenuation in a non-ideal system through a magneto-rheological damper. J. Theor. Appl. Mech. 52(3), 595–604 (2014)

    Google Scholar 

  36. Felix, J.L.P., Balthazar, J.M.: Comments on a nonlinear and nonideal electromechanical damping vibration absorber, Sommerfeld effect and energy transfer. Nonlinear Dyn. 55(1–2), 1–11 (2009)

    MATH  Google Scholar 

  37. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.: Decomposition of governing equations in the analysis of resonant response of a nonlinear and non-ideal vibrating system. Nonlinear Dyn. 82(1–2), 299–309 (2015)

    Article  Google Scholar 

  38. Pennisi, G., Stephan, C., Gourc, E., et al.: Experimental investigation and analytical description of a vibro-impact NES coupled to a single-degree-of-freedom linear oscillator harmonically forced. Nonlinear Dyn. 88(3), 1769–1784 (2017)

    Article  Google Scholar 

  39. Kong, X., Li, H., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn. 91(1), 733–754 (2018)

    Article  Google Scholar 

  40. Li, T., Lamarque, C.H., Seguy, S., et al.: Chaotic characteristic of a linear oscillator coupled with vibro-impact nonlinear energy sink. Nonlinear Dyn. 91(4), 2319–2330 (2018)

    Article  Google Scholar 

  41. Belato, D., Weber, H.I., Balthazar, J.M., Mook, D.T.: Chaotic vibrations of a non-ideal electro-mechanical system. Int. J. Solids Struct. 38, 1699–1706 (2001)

    Article  MATH  Google Scholar 

  42. Belato, D., Weber, H.I., Balthazar, J.M.: Using transient and steady state considerations to investigate the mechanism of loss of stability of a dynamical system. Appl. Math. Comput. 164, 605–613 (2005)

    MATH  Google Scholar 

  43. Wauer, J., Buhrle, P.: Dynamics of a flexible slider-crank mechanism driven by a non-ideal source of energy. Nonlinear Dyn. 13, 221–242 (1997)

    Article  MATH  Google Scholar 

  44. Metallidis, P., Natsiavas, S.: Linear and non-linear dynamics of reciprocating engines. Int. J. Non-Linear Mech. 38, 723–738 (2003)

    Article  MATH  Google Scholar 

  45. Goudas, I., Natsiavas, S.: Non-linear dynamics of engine mechanisms with a flexible connecting rod. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 218, 67–80 (2004)

    Google Scholar 

  46. Avanço, R.H., Tusset, A.M., Balthazar, J.M., et al.: On nonlinear dynamics behavior of an electro-mechanical pendulum excited by a non-ideal motor and a chaos control taking into account parametric errors. J. Braz. Soc. Mech. Sci. Eng. 40, 23 (2018). https://doi.org/10.1007/s40430-017-0955-x

    Article  Google Scholar 

  47. Balthazar, J.M., Tusset, A.M., Brasil, R.M.L.R.F. et al.: An overview on the appearance of the Sommerfeld effect and saturation phenomenon in non-ideal vibrating systems (NIS) in macro and MEMS scales. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4126-0

  48. Biezano, C.B., Grammel, R.: Engineering Dynamics, Vol IV, Internal combustion Engines. Blackie & Son Limited, London and Glasgow (1954)

    Google Scholar 

  49. Bhattacharyya, R., Mukherjee, A., Samantaray, A.K.: Harmonic oscillations of non-conservative, asymmetric, two-degree-of-freedom systems. J. Sound Vib. 264, 973–980 (2004)

    Article  Google Scholar 

  50. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: System Dynamics: Modeling and Simulation of Mechatronic Systems. Wiley, New York (2006)

    Google Scholar 

  51. Borutzky, W.: Bond Graph Methodology Development and Analysis of Multidisciplinary Dynamic System Models. Springer, Berlin (2010)

    Google Scholar 

  52. Merzouki, R., Samantaray, A.K., Pathak, P.M., Bouamama, B.O.: Intelligent Mechatronic Systems: Modeling, Control and Diagnosis. Springer, Berlin (2012)

    Google Scholar 

  53. Mukherjee, A., Karmakar, R., Samantaray, A.K.: Bond Graph in Modeling, Simulation and Fault Identification. CRC Press, Boca Raton (2012)

    Google Scholar 

  54. Borutzky, W.: Bond Graph Modelling of Engineering Systems Theory, Applications and Software Support. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  55. Borutzky, W.: Bond Graph Model-based Fault Diagnosis of Hybrid Systems. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  56. Samantaray, A.K., Ould Bouamama, B.: Model-based Process Supervision: A Bond Graph Approach. Springer, Berlin (2008)

    Google Scholar 

  57. Dauphin-Tanguy, G.: Les Bond Graphs. édition Hermès, Paris (2000)

  58. Bera, T.K., Samantaray, A.K.: Consistent bond graph modelling of planar multibody systems. World J. Model. Simul. 7(3), 173–178 (2011)

    Google Scholar 

  59. Bera, T.K., Bhattacharya, K., Samantaray, A.K.: Evaluation of antilock braking system with an integrated model of full vehicle system dynamics. Simul. Model. Pract. Theory 19(10), 2131–2150 (2011)

    Article  Google Scholar 

  60. Bera, T.K., Samantaray, A.K.: Bond graph model-based inversion of planar parallel manipulator systems. Int. J. Model. Simul. 31(4), 331–342 (2011)

    Google Scholar 

  61. Gor, M.M., Pathak, P.M., Samantaray, A.K., Yang, J.M., Kwak, S.W.: Control of compliant legged quadruped robots in the workspace. Simulation 91(2), 103–125 (2015)

    Article  Google Scholar 

  62. Vaz, A., Shinichi, H.: A simplified model for a biomechanical joint with soft cartilage. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 756–761. IEEE (2004)

  63. Wang, Z., Cao, J., Wu, J.: The dynamic modelling and simulation of planar linkage containing translational joint based on vector bond graph. In: 2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), vol. 9, pp. 4397–4401. IEEE (2011)

  64. Zeid, A.: Bond graph modeling of planar mechanisms with realistic joint effects. J. Dyn. Syst. Measur. Control ASME 111(1), 15 (1989)

    Article  Google Scholar 

  65. Mishra, C., Samantaray, A.K., Chakraborty, G.: Ball bearing defect models: a study of simulated and experimental fault signatures. J. Sound Vib. 400, 86–112 (2017)

    Article  Google Scholar 

  66. Damic, V., Majda, C.: Bond graph based modelling and simulation of flexible robotic manipulators. In: Borutzky W., Orsoni A., Zobel R. (eds.) Proc. 20th European Conference on Modelling and Simulation (2006)

  67. Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Control strategies for DC motors driving rotor dynamic systems through resonance. J. Sound Vib. 411, 304–327 (2017)

    Article  Google Scholar 

  68. Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect in a two-disk rotor dynamic system at various unbalance conditions. Meccanica 53, 681–701 (2018)

    Article  MathSciNet  Google Scholar 

  69. Prakash, O., Samantaray, A.K., Bhattacharyya, R.: Model-based multi-component adaptive prognosis for hybrid dynamical systems. Control Eng. Pract. 72, 1–18 (2018)

    Article  Google Scholar 

  70. Prakash, O., Samantaray, A.K., Bhattacharyya, R.: Model-based diagnosis of multiple faults in hybrid dynamical systems with dynamically updated parameters. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2710143

    Google Scholar 

  71. Hu, F., Jing, X.: A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs. Nonlinear Dyn. 91(1), 157–185 (2018)

    Article  Google Scholar 

  72. Ma, J., Qian, L.: Modeling and simulation of planar multibody systems considering multiple revolute clearance joints. Nonlinear Dyn. 90(3), 1907–1940 (2017)

    Article  MathSciNet  Google Scholar 

  73. Mukherjee, A., Samantaray, A.K.: SYMBOLS-Shakti User’s Manual, HighTech Consultants. STEP Indian Institute of Technology, Kharagpur (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Samantaray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, A., Bharti, S.K., Samantaray, A.K. et al. Sommerfeld effect in an oscillator with a reciprocating mass. Nonlinear Dyn 93, 1719–1739 (2018). https://doi.org/10.1007/s11071-018-4287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4287-x

Keywords

Navigation