Skip to main content
Log in

Vehicle–bridge interaction analysis modeling derailment during earthquakes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A realistic simulation of train derailment is crucial when assessing the safety of a train running over a bridge during earthquake excitation. This paper presents a seismic vehicle–bridge interaction analysis that simulates directly different wheel–rail contact states including flange contact, detachment, uplifting, wheel–rail climbing-up, recontact, and ultimately, derailment. The proposed model determines the contact point and the direction of the contact forces over practical nonlinear profiles of wheels and rails. It then classifies the wheel–rail contact, as double contact, single contact or double detachment, and tackles accordingly the kinematics. The modeling of the wheel–rail contact along the normal direction hinges upon the principles of nonsmooth dynamics and accounts for continuous contacts of finite duration, impacts (instantaneous duration) and transitions from continuous contacts to detachments. The modeling of the tangential contact forces follows the nonlinear creep theory. The results verify that well-known force-based metrics such as derailment factor and offload factor yield conservative estimations of train operational safety. The analysis stresses the key role of flange contact under a large contact angle that could lead to the detachment of the other wheel of the same wheelset, and underlines the importance of a more realistic train–bridge interaction modeling during earthquakes. For the examples examined, which involve a complete three-dimensional vehicle running on simply supported bridge units, derailment occurs when a wheel rolls over the rail head (wheel–rail climbing-up). The results unveil that both the amplitude and the frequency of the earthquakes are important to the safety of trains running over bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. http://en.wikipedia.org/wiki/High-speed_railway_in_China (2015). Accessed 08 Oct 2017

  2. Yan, B., Dai, G.L., Hu, N.: Recent development of design and construction of short span high-speed railway bridges in China. Eng. Struct. 100, 707–717 (2015)

    Article  Google Scholar 

  3. https://en.wikipedia.org/wiki/Danyang%E2%80%93Kunshan_Grand_Bridge (2015). Accessed 08 Oct 2017

  4. Zeng, Q., Dimitrakopoulos, E.G.: Seismic response analysis of an interacting curved bridge–train system under frequent earthquakes. Earthq. Eng. Struct. Dyn. 45, 1129–1148 (2016)

    Article  Google Scholar 

  5. Ogura, M.: The Niigata Chuetsu Earthquake–railway response and reconstruction. Jpn. Railw. Transp. Rev. 43, 46–63 (2006)

    Google Scholar 

  6. Ju, S.H.: Nonlinear analysis of high-speed trains moving on bridges during earthquakes. Nonlinear Dyn. 69(1), 173–183 (2012)

    Article  Google Scholar 

  7. http://www.asahi.com/ajw/articles/AJ201604150055.html (2016). Accessed 08 Oct 2017

  8. Yang, Y.B., Wu, Y.S.: Dynamic stability of trains moving over bridges shaken by earthquakes. J. Sound Vib. 258(1), 65–94 (2002)

    Article  Google Scholar 

  9. Xia, H., Han, Y., Zhang, N., Guo, W.W.: Dynamic analysis of train–bridge system subjected to non-uniform seismic excitations. Earthq. Eng. Struct. Dyn. 35(12), 1563–1579 (2006)

    Article  Google Scholar 

  10. Du, X.T., Xu, Y.L., Xia, H.: Dynamic interaction of bridge–train system under non-uniform seismic ground motion. Earthq. Eng. Struct. Dyn. 41(1), 139–157 (2012)

    Article  Google Scholar 

  11. Cheng, Y.C., Chen, C.H., Hsu, C.T.: Derailment and dynamic analysis of tilting railway vehicles moving over irregular tracks under environment forces. Int. J. Struct. Stab. Dyn. 17(9), 1750098-1-27 (2017)

    Article  MathSciNet  Google Scholar 

  12. Nishimura, K., Terumichi, Y., Morimura, T., Sogabe, K.: Development of vehicle dynamics simulation for safety analyses of rail vehicles on excited tracks. J. Comput. Nonlinear Dyn. 4(1), 011001 (2009)

    Article  Google Scholar 

  13. Tanabe, M., Wakui, H., Sogabe, M., Matsumoto, N., Tanabe, Y.: An efficient numerical model for dynamic interaction of high speed train and railway structure including post-derailment during an earthquake. In: 8th International Conference on Structural Dynamics, EURODYN. Leuven, Belgium, pp. 1217–1223 (2011)

  14. Jin, Z.B., Pei, S.L., Li, X.Z., Liu, H.Y., Qiang, S.Z.: Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges. J. Sound Vib. 383, 277–294 (2016)

    Article  Google Scholar 

  15. Nadal, M.J.: Theorie de la stabilite des locomotives, part 2: mouvement de lacet’. 10, 232–255 (1896)

  16. Wu, X.W., Chi, M.R., Gao, H.: Post-derailment dynamic behaviour of a high-speed train under earthquake excitations. Eng. Fail. Anal. 64, 97–110 (2016)

    Article  Google Scholar 

  17. Weinstock, H.: Wheel climb derailment criteria for evaluation of rail vehicle safety. In: Proceeding of the ASME Winter Annual Meeting, New York, pp. 1–7 (1984)

  18. Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, New York (2010)

    MATH  Google Scholar 

  19. Luo, X.: Study on methodology for running safety assessment of trains in seismic design of railway structures. Soil Dyn. Earthq. Eng. 25(2), 79–91 (2005)

    Article  Google Scholar 

  20. http://www.chinapost.com.tw/taiwan/national/national-news/2010/03/05/246940/HSR-service.htm (2010). Accessed 08 Oct 2017

  21. Ju, S.H.: A frictional contact finite element for wheel/rail dynamic simulations. Nonlinear Dyn. 85(1), 365–374 (2016)

    Article  MathSciNet  Google Scholar 

  22. Comité Europeen de Normalization.: Eurocode 8: design of structures for earthquake resistance-part 2: Bridges. 2, 2003 (1998)

  23. Cook, R.D.: Concepts and Applications of Finite Element Analysis. Wiley, New York (2007)

    Google Scholar 

  24. Chopra, A.K.: Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  25. Yang, Y.B., Wu, Y.S., Yao, Z.D.: Vehicle–Bridge Interaction Dynamics: With Applications to High-Speed Railways. World Scientific, Singapore (2004)

    Book  Google Scholar 

  26. Antolín, P., Zhang, N., Goicoleaa, J.M., Xia, H., Astiza, M.Á., Olivaa, J.: Consideration of nonlinear wheel–rail contact forces for dynamic vehicle–bridge interaction in high-speed railways. J. Sound Vib. 332, 1231–1251 (2013)

    Article  Google Scholar 

  27. Zeng, Q., Yang, Y.B., Dimitrakopoulos, E.G.: Dynamic response of high speed vehicles and sustaining curved bridges under conditions of resonance. Eng. Struct. 114, 61–74 (2016)

    Article  Google Scholar 

  28. Dimitrakopoulos, E.G., Zeng, Q.: A three-dimensional dynamic analysis scheme for the interaction between trains and curved railway bridges. Comput. Struct. 149, 43–60 (2015)

    Article  Google Scholar 

  29. Zeng, Q.: Analysis and Simulation of the Vehicle-Bridge-Interaction in Horizontally Curved Railway Bridges. The Hong Kong University of Science and Technology, Degree of Doctor of Philosophy in Civil Engineering (2016)

  30. Carter, F.W.: On the action of a locomotive driving wheel. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. London, UK, pp. 151–157 (1926)

  31. Shen, Z.Y., Hedrick, J.K., Elkins, J.A.: A comparison of alternative creep force models for rail vehicle dynamic analysis. Veh. Syst. Dyn. 12(1–3), 79–83 (1983)

    Article  Google Scholar 

  32. Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  33. Shi, Z.Q., Dimitrakopoulos, E.G.: Nonsmooth dynamics prediction of measured bridge response involving deck abutment pounding. Earthq. Eng. Struct. Dyn. https://doi.org/10.1002/eqe.2863 (2017)

  34. Dimitrakopoulos, E.G.: Analysis of a frictional oblique impact observed in skew bridges. Nonlinear Dyn. 60(4), 575–595 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Theodosiou, C., Natsiavas, S.: Dynamics of finite element structural models with multiple unilateral constraints. Int. J. Non-Linear Mech. 44(4), 371–382 (2009)

    Article  MATH  Google Scholar 

  36. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, Singapore (1996)

    Book  MATH  Google Scholar 

  37. Dimitrakopoulos, E.G.: Nonsmooth analysis of the impact between successive skew bridge-segments. Nonlinear Dyn. 74(4), 911–928 (2013)

    Article  MathSciNet  Google Scholar 

  38. Giouvanidis, A.I., Dimitrakopoulos, E.G.: Nonsmooth dynamic analysis of sticking impacts in rocking structures. B Earthq. Eng. (2016). https://doi.org/10.1007/s10518-016-0068-4

    Google Scholar 

  39. Glocker, C., Cataldi-Spinola, E., Leine, R.I.: Curve squealing of trains: measurement, modelling and simulation. J. Sound Vib. 324(1), 365–386 (2009)

    Article  Google Scholar 

  40. Antolín, P., Goicolea, J.M., Astiz, M.A.l., Alonso, A.: A methodology for analysing lateral coupled behavior of high speed railway vehicles and structures. In: IOP Conference Series: Materials Science and Engineering. Sidney, Australia, p. 012001 (2010)

  41. Montenegro, P.A., Neves, S.G.M., Calada, R., Tanabe, M., Sogabe, M.: Wheel–rail contact formulation for analyzing the lateral train-structure dynamic interaction. Comput. Struct. 152, 200–214 (2015)

    Article  Google Scholar 

  42. MathWorks: MATLAB User’s Guide. The MathWorks Inc., Natick, MA (1994–2013)

  43. Shampine, L.F., Reichelt, M.W.: The matlab ode suite 18(1), 1–22 (1997)

    Google Scholar 

  44. http://ngawest2.berkeley.edu/site (2015). Accessed 08 Oct 2017

  45. Kim, C.W., Kawatani, M.: Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion. Earthq. Eng. Struct. Dyn. 35(10), 1225–1245 (2006)

    Article  Google Scholar 

  46. China’s Ministry of Railways, Code for Design of High Speed Railway (2009)

  47. Iwnicki, Simon: Handbook of Railway Vehicle Dynamics. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  48. Dimitrakopoulos, E.G., Giouvanidis, A.I.: Seismic response analysis of the planar rocking frame. J. Eng. Mech. 141(7), 04015003 (2015)

    Article  Google Scholar 

  49. Mavroeidis, G.P., Papageorgiou, A.S.: A mathematical representation of near-fault ground motions. Bull. Seismol. Soc. Am. 93(3), 1099–1131 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Research Grants Council 2016, Hong Kong, the People’s Republic of China, under Contract Number: 16244116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zeng.

Appendices

Appendix A

The diagonal mass matrix of a single vehicle is [26]:

$$\begin{aligned} {{\mathbf{M}}^V} = \hbox {diag}\left[ {\begin{array}{*{20}{c}} {{{\mathbf{M}}^c}}&{{{\mathbf{M}}^{t1}}}&{{{\mathbf{M}}^{t2}}}&{{{\mathbf{M}}^{w1}}}&{{{\mathbf{M}}^{w2}}}&{{{\mathbf{M}}^{w3}}}&{{{\mathbf{M}}^{w4}}} \end{array}} \right] \end{aligned}$$
(37)

Sub-matrices in  \({{\mathbf{M}}^V}\)  are:

$$\begin{aligned} {{\mathbf{M}}^c}= & {} \hbox {diag}\left[ {\begin{array}{*{20}{c}} {{m_c}}&{{m_c}}&{{I_{cx}}}&{{I_{cy}}}&{{I_{cz}}} \end{array}} \right] , \end{aligned}$$
(38)
$$\begin{aligned} {{\mathbf{M}}^{t1}}= & {} {{\mathbf{M}}^{t2}} = \hbox {diag}\left[ {\begin{array}{*{20}{c}} {{m_t}}&{{m_t}}&{{I_{tx}}}&{{I_{ty}}}&{{I_{tz}}} \end{array}} \right] , \end{aligned}$$
(39)

and

$$\begin{aligned} {{\mathbf{M}}^{w1}}= & {} {{\mathbf{M}}^{w2}} = {{\mathbf{M}}^{w3}} = {{\mathbf{M}}^{w4}} \nonumber \\= & {} diag\left[ {\begin{array}{*{20}{c}} {{m_w}}&{{m_w}}&{{I_{wx}}}&{{I_{wz}}} \end{array}} \right] . \end{aligned}$$
(40)

The partitioned stiffness matrix is given as:

$$\begin{aligned} {{\mathbf{K}}^V} = \left[ {\begin{array}{*{20}{c}} {{\mathbf{K}}{}^{cc}}&{}{}&{}{}&{}{}&{}{}&{}{}&{}{{\mathrm{symm}}{\mathrm{.}}}\\ {{{\mathbf{K}}^{t1c}}}&{}{{{\mathbf{K}}^{t1t1}}}&{}{}&{}{}&{}{}&{}{}&{}{}\\ {{{\mathbf{K}}^{t2c}}}&{}{\mathbf{0}}&{}{{{\mathbf{K}}^{t2t2}}}&{}{}&{}{}&{}{}&{}{}\\ {\mathbf{0}}&{}{{{\mathbf{K}}^{w1t1}}}&{}{\mathbf{0}}&{}{{{\mathbf{K}}^{w1w1}}}&{}{}&{}{}&{}{}\\ {\mathbf{0}}&{}{{{\mathbf{K}}^{w2t1}}}&{}{\mathbf{0}}&{}{\mathbf{0}}&{}{{{\mathbf{K}}^{w2w2}}}&{}{}&{}{}\\ {\mathbf{0}}&{}{\mathbf{0}}&{}{{{\mathbf{K}}^{w3t2}}}&{}{\mathbf{0}}&{}{\mathbf{0}}&{}{{{\mathbf{K}}^{w3w3}}} &{}{}\\ {\mathbf{0}}&{}{\mathbf{0}}&{}{{{\mathbf{K}}^{w4t2}}}&{}{\mathbf{0}}&{}{\mathbf{0}}&{}{\mathbf{0}}&{}{{{\mathbf{K}}^{w4w4}}} \end{array}} \right] \end{aligned}$$
(41)
Table 3 The parameters and properties of the vehicle model of HSR trains [25]

The nonzero entries in the partitioned matrix are:

$$\begin{aligned} {{\mathbf{K}}^{cc}}= & {} \left[ {\begin{array}{*{20}{c}} {4{k_{y2}}}&{}{}&{}{}&{}{}&{}{{\mathrm{symm}}{\mathrm{.}}}\\ 0&{}{4{k_{z2}}}&{}{}&{}{}&{}{}\\ {4{h_1}{k_{y2}}}&{}0&{}a&{}{}&{}{}\\ 0&{}0&{}0&{}b&{}{}\\ 0&{}0&{}0&{}0&{}c \end{array}} \right] , \end{aligned}$$
(42)
$$\begin{aligned} {{\mathbf{K}}^{t1c}}= & {} \left[ {\begin{array}{*{20}{c}} { - 2{k_{y2}}}&{}0&{}{ - 2{h_1}{k_{y2}}}&{}0&{}{ - 2{d_2}{k_{y2}}}\\ 0&{}{ - 2{k_{z2}}}&{}0&{}{2{d_2}{k_{z2}}}&{}0\\ {2{h_2}{k_{y2}}}&{}0&{}d&{}0&{}{2{h_2}{d_2}{k_{y2}}}\\ 0&{}0&{}0&{}{2{h_1}{h_2}{k_{x2}}}&{}0\\ 0&{}0&{}0&{}0&{}{ - 2{b_2}^2{k_{x2}}} \end{array}} \right] , \nonumber \\ \end{aligned}$$
(43)
$$\begin{aligned} {{\mathbf{K}}^{t2c}}= & {} \left[ {\begin{array}{*{20}{c}} { - 2{k_{y2}}}&{}0&{}{ - 2{h_2}{k_{y2}}}&{}0&{}{2{d_2}{k_{y2}}}\\ 0&{}{ - 2{k_{z2}}}&{}0&{}{ - 2{d_2}{k_{z2}}}&{}0\\ {2{h_2}{k_{y2}}}&{}0&{}d&{}0&{}{ - 2{h_2}{d_2}{k_{y2}}}\\ 0&{}0&{}0&{}{2{h_1}{h_2}{k_{x2}}}&{}0\\ 0&{}0&{}0&{}0&{}{ - 2{b_2}^2{k_{x2}}} \end{array}} \right] , \nonumber \\ \end{aligned}$$
(44)
$$\begin{aligned} {{\mathbf{K}}^{t1t1}}= & {} {{\mathbf{K}}^{t2t2}} \nonumber \\= & {} \left[ {\begin{array}{*{20}{c}} {2{k_{y2}} + 4{k_{y1}}}&{}{}&{}{}&{}{}&{}{{\mathrm{symm}}.}\\ 0&{}{2{k_{z2}} + 4{k_{z1}}}&{}{}&{}{}&{}{}\\ {4{h_3}{k_{y1}} - 2{h_2}{k_{y2}}}&{}0&{}e&{}{}&{}{}\\ 0&{}0&{}0&{}f&{}{}\\ 0&{}0&{}0&{}0&{}g \end{array}} \right] , \nonumber \\ \end{aligned}$$
(45)
$$\begin{aligned} {{\mathbf{K}}^{w1t1}}= & {} {{\mathbf{K}}^{w3t2}} \nonumber \\= & {} \left[ {\begin{array}{*{20}{c}} { - 2{k_{y1}}}&{}0&{}{2{h_3}{k_{y1}}}&{}0&{}{ - 2{d_1}{k_{y1}}}\\ 0&{}{ - 2{k_{z1}}}&{}0&{}{2{d_1}{k_{z1}}}&{}0\\ 0&{}0&{}{ - 2{b_1}^2{k_{z1}}}&{}0&{}0\\ 0&{}0&{}0&{}0&{}{ - 2{b_1}^2{k_{x1}}} \end{array}} \right] , \nonumber \\ \end{aligned}$$
(46)
$$\begin{aligned} {{\mathbf{K}}^{w2t1}}= & {} {{\mathbf{K}}^{w4t2}} \nonumber \\= & {} \left[ {\begin{array}{*{20}{c}} { - 2{k_{y1}}}&{}0&{}{2{h_3}{k_{y1}}}&{}0&{}{2{d_1}{k_{y1}}}\\ 0&{}{ - 2{k_{z1}}}&{}0&{}{ - 2{d_1}{k_{z1}}}&{}0\\ 0&{}0&{}{ - 2{b_1}^2{k_{z1}}}&{}0&{}0\\ 0&{}0&{}0&{}0&{}{ - 2{b_1}^2{k_{x1}}} \end{array}} \right] , \nonumber \\ \end{aligned}$$
(47)
$$\begin{aligned} {{\mathbf{K}}^{w1w1}}= & {} {{\mathbf{K}}^{w2w2}} = {{\mathbf{K}}^{w3w3}} = {{\mathbf{K}}^{w4w4}}\nonumber \\= & {} diag\left[ {\begin{array}{*{20}{c}} {2{k_{y1}}}&{2{k_{z1}}}&{2{b_1}^2{k_{z1}}}&{2{b_1}^2{k_{x1}}} \end{array}} \right] \end{aligned}$$
(48)

where

$$\begin{aligned} \begin{aligned} a&= 4{h_1}^2{k_{y2}}\; + 4{b_2}^2{k_{z2}},b = 4{d_2}^2{k_{z2}} + 4{h_1}^2{k_{x2}},\\ c&= 4{d_2}^2{k_{y2}} + 4{b_2}^2{k_{x2}},d = - 2{b_2}^2{k_{z2}} + 2{h_1}{h_2}{k_{y2}},\\ e&= 2{b_2}^2{k_{z2}} + 2{h_2}^2{k_{y2}} + 4{b_1}^2{k_{z1}} + 4{h_3}^2{k_{y1}}\\ f&= 2{h_2}^2{k_{x2}} + 4{d_1}^2{k_{z1}} + 4{h_3}^2{k_{x1}},\\ g&= 4{b_1}^2{k_{x1}} + 4{d_1}^2{k_{y1}} + 2{b_2}^2{k_{x2}}. \end{aligned} \end{aligned}$$
(49)

Replacing  ‘k’  in the corresponding sub-stiffness matrix with  ‘c’, the damping matrix  \({{\mathbf{C}}^V}\)  is identical in form with the stiffness matrix  \({{\mathbf{K}}^V}\)  [26].

The contact direction matrices for the upper parts of the vehicle (car body and bogies) are zero. The nonzero normal contact direction matrix of a single wheelset in Eq. (9) is given as [29]:

$$\begin{aligned} {{\mathbf{W}}_N}^{wi} = \left[ {\begin{array}{*{20}{c}} {{\mathrm{c}}{\delta _L} \cdot {\mathrm{s}} {\phi ^{wi}} \cdot {\mathrm{s}} {\psi ^{wi}} + {\mathrm{s}}{\delta _L} \cdot {\mathrm{c}}{\phi ^{wi}} \cdot {\mathrm{s}} {\psi ^{wi}}}&{}{{\mathrm{c}}{\delta _R} \cdot {\mathrm{s}} {\phi ^{wi}} \cdot {\mathrm{s}} {\psi ^{wi}} - {\mathrm{s}}{\delta _R} \cdot {\mathrm{c}}{\phi ^{wi}} \cdot {\mathrm{s}} {\psi ^{wi}}}\\ { -\, {\mathrm{c}}{\delta _L} \cdot {\mathrm{s}}{\phi ^{wi}} \cdot {\mathrm{c}}{\psi ^{wi}} - {\mathrm{s}}{\delta _L} \cdot {\mathrm{c}}{\phi ^{wi}} \cdot {\mathrm{c}}{\psi ^{wi}}}&{}{ -\, {\mathrm{c}}{\delta _R} \cdot {\mathrm{s}}{\phi ^{wi}} \cdot {\mathrm{c}}{\psi ^{wi}} + {\mathrm{s}}{\delta _R} \cdot {\mathrm{c}}{\phi ^{wi}} \cdot {\mathrm{c}}{\psi ^{wi}}}\\ {{\mathrm{c}}{\delta _L} \cdot {\mathrm{c}}{\phi ^{wi}} - {\mathrm{s}}{\delta _L} \cdot {\mathrm{s}}{\phi ^{wi}}}&{}{{\mathrm{c}}{\delta _R} \cdot {\mathrm{c}}{\phi ^{wi}} - {\mathrm{s}}{\delta _R} \cdot {\mathrm{s}}{\phi ^{wi}}}\\ 0&{}0\\ { -\, {r_L} \cdot {\mathrm{s}}{\delta _L} + {l_{aL}} \cdot {\mathrm{c}}{\delta _L}}&{}{{r_R} \cdot {\mathrm{s}}{\delta _R} - {l_{aR}} \cdot {\mathrm{c}}{\delta _R}}\\ 0&{}0 \end{array}} \right] \end{aligned}$$
(50)

The nonzero contact direction matrix of a single wheelset  \({{\mathbf{W}}_T}^{wi}\)  corresponding to the longitudinal and the lateral creep forces (\({{\lambda _{Tx}}^i}\)  and  \({{\lambda _{Ty}}^i}\)) and the spin moment (\({{\lambda _{Mz}}^i}\)) is given as:

$$\begin{aligned} {{\mathbf{W}}_T}^{wi} = \left[ {\begin{array}{*{20}{c}} {{{\mathbf{W}}_{Tx}}^{wi}}&{{{\mathbf{W}}_{Ty}}^{wi}}&{{{\mathbf{W}}_{Mz}}^{wi}} \end{array}} \right] \end{aligned}$$
(51)

with

$$\begin{aligned} {{\mathbf{W}}_{Tx}}^{wi}= & {} \left[ {\begin{array}{*{20}{c}} {{\mathrm{c}}{\psi ^{wi}}}&{}{{\mathrm{c}}{\psi ^{wi}}}\\ {{\mathrm{s}} {\psi ^{wi}}}&{}{{\mathrm{s}} {\psi ^{wi}}}\\ 0&{}0\\ { - {l_{aL}} \cdot {\mathrm{c}} {\phi ^{wi}} - {r_L} \cdot {\mathrm{s}}{\phi ^{wi}}}&{}{{l_{aR}} \cdot {\mathrm{c}} {\phi ^{wi}} - {r_R} \cdot {\mathrm{s}}{\phi ^{wi}}}\\ 0&{}0\\ { - {r_L}}&{}{ - {r_R}} \end{array}} \right] , \end{aligned}$$
(52)
$$\begin{aligned} {{\mathbf{W}}_{Ty}}^{wi}= & {} \left[ {\begin{array}{*{20}{c}} { - {\mathrm{c}}{\delta _L} \cdot {\mathrm{c}} {\phi ^{wi}} \cdot {\mathrm{s}} {\psi ^{wi}} + {\mathrm{s}}{\delta _L} \cdot {\mathrm{s}}{\phi ^{wi}} \cdot {\mathrm{s}} {\psi ^{wi}}}&{}{ - {\mathrm{c}}{\delta _R} \cdot {\mathrm{c}} {\phi ^{wi}} \cdot {\mathrm{s}} {\psi ^{wi}} - {\mathrm{s}}{\delta _R} \cdot {\mathrm{s}}{\phi ^{wi}} \cdot {\mathrm{s}} {\psi ^{wi}}}\\ {{\mathrm{c}}{\delta _L} \cdot {\mathrm{c}} {\phi ^{wi}} \cdot {\mathrm{c}}{\psi ^{wi}} - {\mathrm{s}}{\delta _L} \cdot {\mathrm{s}}{\phi ^{wi}} \cdot {\mathrm{c}}{\psi ^{wi}}}&{}{{\mathrm{c}}{\delta _R} \cdot {\mathrm{c}} {\phi ^{wi}} \cdot {\mathrm{c}}{\psi ^{wi}} + {\mathrm{s}}{\delta _R} \cdot {\mathrm{s}}{\phi ^{wi}} \cdot {\mathrm{c}}{\psi ^{wi}}}\\ {{\mathrm{c}}{\delta _L} \cdot {\mathrm{s}}{\phi ^{wi}} + {\mathrm{s}}{\delta _L} \cdot {\mathrm{c}}{\phi ^{wi}}}&{}{{\mathrm{c}}{\delta _R} \cdot {\mathrm{s}}{\phi ^{wi}} - {\mathrm{s}}{\delta _R} \cdot {\mathrm{c}}{\phi ^{wi}}}\\ 0&{}0\\ {{r_L} \cdot {\mathrm{c}}{\delta _L} + {l_{aL}} \cdot {\mathrm{s}}{\delta _L}}&{}{{r_R} \cdot {\mathrm{c}}{\delta _R} + {l_{aR}} \cdot {\mathrm{s}}{\delta _R}}\\ 0&{}0 \end{array}} \right] , \end{aligned}$$
(53)

and

$$\begin{aligned} {{\mathbf{W}}_{Mz}}^{wi} = \left[ {\begin{array}{*{20}{c}} 0&{}0\\ 0&{}0\\ 0&{}0\\ {{\mathrm{c}}{\delta _L} \cdot {\mathrm{c}} {\phi ^{wi}} - {\mathrm{s}}{\delta _L} \cdot {\mathrm{s}}{\phi ^{wi}}}&{}{{\mathrm{c}}{\delta _R} \cdot {\mathrm{c}} {\phi ^{wi}} + {\mathrm{s}}{\delta _R} \cdot {\mathrm{s}}{\phi ^{wi}}}\\ 0&{}0\\ { - {\mathrm{s}}{\delta _L}}&{}{{\mathrm{s}}{\delta _R}} \end{array}} \right] \end{aligned}$$
(54)

where the contact parameters  \(\delta _L\)  and  \(\delta _R\)  are the contact angles of the left  (L)  wheel and the right  (R)  wheel; \(r_L\)  and  \(r_R\)  are the actual rolling radii; and  \(l_{aL}\)  and  \(l_{aR}\)  are the half-contact width of the left and the right wheels (Fig. 5b). Abbreviations ‘s’ and ‘c’ denote the ‘sin’ and the ‘cos’ functions.

Table 3 lists the properties of the vehicle model [25]:

Table 4 Comparison of computational time between lookup tables and online contact search approach

Appendix B

See Table 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Dimitrakopoulos, E.G. Vehicle–bridge interaction analysis modeling derailment during earthquakes. Nonlinear Dyn 93, 2315–2337 (2018). https://doi.org/10.1007/s11071-018-4327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4327-6

Keywords

Navigation