Skip to main content
Log in

Adaptive neural network finite time control for quadrotor UAV with unknown input saturation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study presents a novel adaptive robust control strategy for the position and attitude tracking of quadrotor unmanned aerial vehicles (UAVs) in the presence of input saturation, unmodeled nonlinear dynamics, and external disturbances. To deal with the negative effects of completely unknown input saturation constraints, a nonsymmetric saturation nonlinearity approxiator constructed by the hyperbolic tangent function attached with a parameter adjustment mechanism is incorporated into the controller design. Then, a novel neural network (NN) finite time backstepping-based anti-saturation control approach is proposed by introducing the NN finite time backstepping, designing the new virtual control signals and the modified error compensation mechanism. The proposed approach not only holds the advantages of the NN finite time backstepping control, but also prevents the system from degradation or even instability caused by unknown nonsymmetric saturation nonlinearities in actuator. The finite time convergence of all signals in the closed-loop aircraft system is guaranteed via Lyapunov finite time methodology despite the input saturations, unmodeled dynamics, and external disturbances. Finally, numerical simulations are carried out to illustrate the effectiveness and robustness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rios, H., Falcon, R., Gonzalez, O.A., Dzul, A.: Continuous sliding-mode control strategies for quadrotor robust tracking: real-time application. IEEE Trans. Ind. Electron. 66(2), 1264–1272 (2019)

    Google Scholar 

  2. Zhao, Z., Wang, X., Yao, P., Xu, J., Yu, J.: Fuzzy health degree-based dynamic performance evaluation of quadrotors in the presence of actuator and sensor faults. Nonlinear Dyn. 95(3), 2477–2490 (2019)

    Google Scholar 

  3. Hua, C., Chen, J., Guan, X.: Fractional-order sliding mode control of uncertain QUAVs with time-varying state constraints. Nonlinear Dyn. 95(2), 1347–1360 (2019)

    Google Scholar 

  4. Hua, C.C., Wang, K., Chen, J.N., You, X.: Tracking differentiator and extended state observer-based nonsingular fast terminal sliding mode attitude control for a quadrotor. Nonlinear Dyn. 94(1), 343–354 (2018)

    Google Scholar 

  5. Li, C., Zhang, Y., Li, P.: Full control of a quadrotor using parameter-scheduled backstepping method: implementation and experimental tests. Nonlinear Dyn. 89(2), 1259–1278 (2017)

    Google Scholar 

  6. Aboudonia, A., El-Badawy, A., Rashad, R.: Active anti-disturbance control of a quadrotor unmanned aerial vehicle using the command-filtering backstepping approach. Nonlinear Dyn. 90(1), 581–597 (2017)

    MATH  Google Scholar 

  7. Zhu, W., Du, H., Cheng, Y., Chu, Z.: Hovering control for quadrotor aircraft based on finite-time control algorithm. Nonlinear Dyn. 88(4), 2359–2369 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Kocer, B.B., Tjahjowidodo, T., Seet, G.G.L.: Model predictive UAV-tool interaction control enhanced by external forces. Mechatronics 58, 47–57 (2019)

    Google Scholar 

  9. Zhou, B., Li, Z., Zheng, Z., Tang, S.: Nonlinear adaptive tracking control for a small-scale unmanned helicopter using a learning algorithm with the least parameters. Nonlinear Dyn. 89(2), 1289–1308 (2017)

    MATH  Google Scholar 

  10. Ma, H.J., Liu, Y., Li, T., Yang, G.H.: Nonlinear high-gain observer-based diagnosis and compensation for actuator and sensor faults in a quadrotor unmanned aerial vehicle. IEEE Trans. Ind. Inform. 15(1), 550–562 (2019)

    Google Scholar 

  11. Sun, M., Liu, J., Wang, H., Nian, X., Xiong, H.: Robust fuzzy tracking control of a quad-rotor unmanned aerial vehicle based on sector linearization and interval matrix approaches. ISA Trans. 80, 336–349 (2018)

    Google Scholar 

  12. Hua, C., Chen, J., Guan, X.: Adaptive prescribed performance control of QUAVs with unknown time-varying payload and wind gust disturbance. J. Frankl. Inst. Eng. Appl. Math. 355(14), 6323–6338 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Hou, Z., Fantoni, I.: Interactive leader–follower consensus of multiple quadrotors based on composite nonlinear feedback control. IEEE Trans Control Syst. Technol. 26(5), 1732–1743 (2018)

    Google Scholar 

  14. Yu, J., Zhao, L., Yu, H., Lin, C., Dong, Wenjie: Fuzzy finite-time command filtered control of nonlinear systems with input saturation. IEEE Trans. Cybern. 48(8), 2378–2387 (2018)

    Google Scholar 

  15. Mokhtari, A., Benallegue, A., Daachi, B.: Robust feedback linearization and GH controller for a quadrotor unmanned aerial vehicle. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005 (IROS 2005). IEEE, pp. 1198–1203 (2005)

  16. Heng, X., Cabecinhas, D., Cunha, R., Silvestre, C., Qingsong, X.: A trajectory tracking LQR controller for a quadrotor: design and experimental evaluation. In: TENCON 2015–2015 IEEE Region 10 Conference. IEEE, pp. 1–7 (2015)

  17. Kendoul, F., Lara, D., Fantoni, I., Lozano, R.: Real-time nonlinear embedded control for an autonomous quadrotor helicopter. J. Guid. Control Dyn. 30(4), 1049–1061 (2007)

    Google Scholar 

  18. Guerrero-Castellanos, J.F., Marchand, N., Hably, A., Lesecq, S., Delamare, J.: Bounded attitude control of rigid bodies: real-time experimentation to a quadrotor mini-helicopter. Control Eng. Pract. 19(8), 790–797 (2011)

    Google Scholar 

  19. López-Araujo, D.J., Zavala-Río, A., Fantoni, I., Salazar, S., Lozano, R.: Global stabilisation of the PVTOL aircraft with lateral force coupling and bounded inputs. Int. J. Control 83(7), 1427–1441 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Cao, N., Lynch, A.F.: Inner–outer loop control for quadrotor UAVs with input and state constraints. IEEE Trans. Control Syst. Technol. 24(5), 1797–1804 (2016)

    Google Scholar 

  21. Li, S., Wang, Y., Tan, J.: Adaptive and robust control of quadrotor aircrafts with input saturation. Nonlinear Dyn. 89(1), 255–265 (2017)

    MATH  Google Scholar 

  22. Ofodile, N.A., Turner, M.C.: Anti-windup design for input-coupled double integrator systems with application to quadrotor UAV’s. Eur. J. Control 38, 22–31 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Huang, Y., Zheng, Z., Sun, L., Zhu, M.: Saturated adaptive sliding mode control for autonomous vessel landing of a quadrotor. IET Control Theory Appl. 12(13), 1830–1842 (2018)

    MathSciNet  Google Scholar 

  24. Wentao, X., Shaojun, T., Hui Y. .: Robust trajectory tracking control for a quadrotor based on a composite sliding mode control method. In: 2018 37th Chinese Control Conference (CCC), pp. 919–924 (2018)

  25. Zhou, F., Zhou, Y.J., Jiang, G.P., Cao, N. .: Adaptive tracking control of quadrotor UAV system with input constraints. In: 2018 Chinese Control And Decision Conference (CCDC), pp. 5774–5779 (2018)

  26. Wang, X., Su, X., Sun, L.: Disturbance observer-based singularity-free trajectory tracking control of uncertain quadrotors with input saturation. In: 2018 Chinese Control And Decision Conference (CCDC), pp. 5780–5785 (2018)

  27. Faessler, M., Falanga, D., Scaramuzza, D.: Thrust mixing, saturation, and body-rate control for accurate aggressive quadrotor flight. IEEE Robot. Autom. Lett. 2(2), 476–482 (2017)

    Google Scholar 

  28. Tran, T.T., Sam, S., He, W., Luu-Trung-Duong, P., Truong, N.V.: Trajectory tracking control of a quadrotor aerial vehicle in the presence of input constraints. Int. J Control Autom. Syst. 16(6), 2966–2976 (2018)

    Google Scholar 

  29. Tran, T.T., Ge, S.S., He, W.: Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters. Int. J. Control 91(5), 1140–1160 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Wang, W.: Trajectory tracking control of a 6-DOF quadrotor UAV with input saturation via backstepping. J. Frankl. Inst. Eng. Appl. Math. 355(7), 3288–3309 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Shahvali, M., Pariz, N., Akbariyan, M.: Distributed finite-time control for arbitrary switched nonlinear multi-agent systems: an observer-based approach. Nonlinear Dyn. 94(3), 2127–2142 (2018)

    MATH  Google Scholar 

  32. Liu, Y., Liu, X., Jing, Y., Zhang, Z.: A novel finite-time adaptive fuzzy tracking control scheme for nonstrict feedback systems. IEEE Trans. Fuzzy Syst. 27(4), 646–658 (2019)

    Google Scholar 

  33. Xin, Q., Shi, Z.: Robust adaptive backstepping controller design for aircraft autonomous short landing in the presence of uncertain aerodynamics. J. Aerosp. Eng. 31(2), 04018005 (2018)

    Google Scholar 

  34. Wu, D., Chen, M., Gong, H.: Robust control of post-stall pitching maneuver based on finite-time observer. ISA Trans. 70, 53–63 (2017)

    Google Scholar 

  35. Guo, Y., Guo, J.H., Song, S.M.: Backstepping control for attitude tracking of the spacecraft under input saturation. Acta Astronaut. 138, 318–325 (2017)

    Google Scholar 

  36. Cai, M., Xiang, Z.: Adaptive finite-time control of a class of non-triangular nonlinear systems with input saturation. Neural Comput. Appl. 29(7), 565–576 (2018)

    Google Scholar 

  37. Chen, L., Li, C., Sun, Y., Ma, G.: Distributed finite-time tracking control for multiple uncertain Euler–Lagrange systems with input saturations and error constraints. IET Control Theory Appl. 13(1), 123–133 (2019)

    MathSciNet  Google Scholar 

  38. Ni, J., Liu, L., He, W., Liu, C.: Adaptive dynamic surface neural network control for nonstrict-feedback uncertain nonlinear systems with constraints. Nonlinear Dyn. 94(1), 165–184 (2018)

    MATH  Google Scholar 

  39. Song, Y., Zhou, S.: Neuroadaptive control with given performance specifications for MIMO strict-feedback systems under nonsmooth actuation and output constraints. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4414–4425 (2018)

    Google Scholar 

  40. Luo, J., Wei, C., Dai, H., Yuan, J.: Robust LS-SVM-based adaptive constrained control for a class of uncertain nonlinear systems with time-varying predefined performance. Commun. Nonlinear Sci. Numer. Simul. 56, 561–587 (2018)

    MathSciNet  Google Scholar 

  41. Zhang, Q., Wang, C., Xu, D.: Finite-time stabilization for a class of non-affine nonlinear systems with input saturation and time-varying output constraints. IEEE Access 6, 23529–23539 (2018)

    Google Scholar 

  42. Jiang, T., Lin, D., Song, T.: Finite-time backstepping control for quadrotors with disturbances and input constraints. IEEE Access 6, 62037–62049 (2018)

    Google Scholar 

  43. Fu, C., Tian, Y., Huang, H., Zhang, L., Peng, C.: Finite-time trajectory tracking control for a 12-rotor unmanned aerial vehicle with input saturation. ISA Trans. 81, 52–62 (2018)

    Google Scholar 

  44. Zou, A.M., Kumar, K.D.: Finite-time attitude control for rigid spacecraft subject to actuator saturation. Nonlinear Dyn. 96(2), 1017–1035 (2019)

    Google Scholar 

  45. Zheng, Z., Xie, L.: Finite-time path following control for a stratospheric airship with input saturation and error constraint. Int. J. Control 92(2), 368–393 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Zou, A.M., de Ruiter, A.H.J., Kumar, K.D.: Disturbance observer-based attitude control for spacecraft with input MRS. IEEE Trans. Aerosp. Electron. Syst. 55(1), 384–396 (2019)

    Google Scholar 

  47. Su, H., Zhang, W.: Adaptive fuzzy control of MIMO nonstrict-feedback nonlinear systems with fuzzy dead zones and time delays. Nonlinear Dyn. 95(2), 1565–1583 (2019)

    MathSciNet  Google Scholar 

  48. Niu, J., Chen, F., Tao, G.: Nonlinear fuzzy fault-tolerant control of hypersonic flight vehicle with parametric uncertainty and actuator fault. Nonlinear Dyn. 92(3), 1299–1315 (2018)

    MATH  Google Scholar 

  49. Han, Y., Yu, J., Zhao, L., Yu, H., Lin, C.: Finite-time adaptive fuzzy control for induction motors with input saturation based on command filtering. IET Control Theory Appl. 12(15), 2148–2155 (2018)

    MathSciNet  Google Scholar 

  50. Xia, K., Huo, W.: Adaptive control for spacecraft rendezvous subject to actuator faults and saturations. ISA Trans. 80, 176–186 (2018)

    Google Scholar 

  51. Zhao, S., Liang, H., Du, P., Qi, S.: Adaptive NN finite-time tracking control of output constrained nonlinear system with input saturation. Nonlinear Dyn. 92(4), 1845–1856 (2018)

    MATH  Google Scholar 

  52. Xu, B.: Composite learning finite-time control with application to quadrotors. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1806–1815 (2018)

    Google Scholar 

  53. Wu, H.: Simple adaptive robust output tracking control schemes of uncertain parametric strict-feedback non-linear systems with unknown input saturations. IET Control Theory Appl. 12(12), 1694–1703 (2018)

    MathSciNet  Google Scholar 

  54. Zhao, B., Jia, L., Xia, H., Li, Y.: Adaptive dynamic programming-based stabilization of nonlinear systems with unknown actuator saturation. Nonlinear Dyn. 93(4), 2089–2103 (2018)

    MATH  Google Scholar 

  55. Aghababa, M.P.: Finite time control of a class of nonlinear switched systems in spite of unknown parameters and input saturation. Nonlinear Anal. Hybrid Syst. 31, 220–232 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Moradvandi, A., Shahrokhi, M., Malek, S.A.: Adaptive fuzzy decentralized control for a class of MIMO large-scale nonlinear state delay systems with unmodeled dynamics subject to unknown input saturation and infinite number of actuator failures. Inf. Sci. 475, 121–141 (2019)

    MathSciNet  Google Scholar 

  57. Xiao, B., Yin, S.: A new disturbance attenuation control scheme for quadrotor unmanned aerial vehicles. IEEE Trans. Ind. Inform. 13(6), 2922–2932 (2017)

    Google Scholar 

  58. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    MathSciNet  MATH  Google Scholar 

  59. Yu, S.H., Yu, X.H., Shirinzadeh, B., Man, Z.H.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (61473144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Wang.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 3:

We construct the Lyapunov function as

$$\begin{aligned} V^{\prime }=V_T^{\prime }+V_R^{\prime }. \end{aligned}$$
(111)

Taking time derivative of V yields

$$\begin{aligned} \begin{aligned} {\dot{V}}^{\prime }&={\dot{V}}^{\prime }_T+{\dot{V}}_R^{\prime }\\&\le -a_0V_T^{\prime }-b_0V_T^{' \frac{2-\sigma }{2}}+c_0\\&\quad -a_2V_R^{\prime }-b_2V_R^{' \frac{2-\sigma }{2}}+c_2\\&\le -a^{\prime }V^{\prime }-b^{\prime }V^{' \frac{2-\sigma }{2}}+c^{\prime }, \end{aligned} \end{aligned}$$
(112)

where

$$\begin{aligned} \begin{aligned}&a^{\prime }=\mathrm{min}\left\{ a_0,a_2\right\} ,\\&b^{\prime }=\mathrm{min}\left\{ b_0,b_2\right\} ,\\&c^{\prime }=c_0+c_2. \end{aligned} \end{aligned}$$
(113)

Then,

$$\begin{aligned} {\dot{V}}^{\prime }\le -\left( a-\frac{c}{2V^{\prime }}\right) V^{\prime }-\left( b-\frac{c}{2V^{' \frac{2-\sigma }{2}}}\right) V^{' \frac{2-\sigma }{2}}.\nonumber \\ \end{aligned}$$
(114)

From (114), if \(\gamma =a-c/(2V^{\prime })>0\) and \(\beta =b-c/(2V^{' \frac{2-\sigma }{2}})>0\), then by applying Lemma 1, \(e_1,e_2\)\(,e_3,e_4\), \({\tilde{\theta }}_0\), and \({\tilde{\theta }}_2\) will converge to the region in finite time

$$\begin{aligned} T=\frac{1}{\gamma (1-\frac{2-\sigma }{2})}\mathrm{ln}\frac{\gamma V^{' 1-\frac{2-\sigma }{2}}(\imath )+\beta }{\beta }, \end{aligned}$$
(115)

where \(\imath =[e_{1,0},e_{2,0},e_{3,0},e_{4,0},{\tilde{\theta }}_{0,0},{\tilde{\theta }}_{2,0}]^T\) is the error vector \([e_{1},e_{2},e_{3},e_{4},{\tilde{\theta }}_{0},{\tilde{\theta }}_{2}]^{T}\) at \(t=0\). \(\square \)

Proof of Theorem 4:

Considering Theorems 1, 2, we construct the Lyapunov function as

$$\begin{aligned} V=V_T+V_R. \end{aligned}$$
(116)

Taking time derivative of V yields

$$\begin{aligned} \begin{aligned} {\dot{V}}&={\dot{V}}_T+{\dot{V}}_R\\&\le -a_1V_T-b_1V_T^{\frac{2-\sigma }{2}}+c_1\\&\quad -a_3V_R-b_3V_R^{\frac{2-\sigma }{2}}+c_3\\&\le -aV-bV^{\frac{2-\sigma }{2}}+c, \end{aligned} \end{aligned}$$
(117)

where

$$\begin{aligned} \begin{aligned}&a=\mathrm{min}\left\{ a_1,a_3\right\} ,\\&b=\mathrm{min}\left\{ b_1,b_3\right\} ,\\&c=c_1+c_3. \end{aligned} \end{aligned}$$
(118)

Then,

$$\begin{aligned} {\dot{V}}\le -\left( a-\frac{c}{2V}\right) V-\left( b-\frac{c}{2V^{\frac{2-\sigma }{2}}}\right) V^{\frac{2-\sigma }{2}}. \end{aligned}$$
(119)

From (114), if \(\gamma =a-c/(2V)>0\) and \(\beta =b-c/(2V^{\frac{2-\sigma }{2}})>0\), then by applying Lemma 1, \(e_1,e_2,\)\(e_3,e_4\), \({\tilde{\theta }}_1\), and \({\tilde{\theta }}_3\) will converge to the region in finite time

$$\begin{aligned} T=\frac{1}{\gamma (1-\frac{2-\sigma }{2})}\mathrm{ln}\frac{\gamma V^{1-\frac{2-\sigma }{2}}(\imath )+\beta }{\beta }, \end{aligned}$$
(120)

where \(\imath =[e_{1,0},e_{2,0},e_{3,0},e_{4,0},{\tilde{\theta }}_{1,0},{\tilde{\theta }}_{3,0}]^T\) is the error vector \([e_{1},e_{2},e_{3},e_{4},{\tilde{\theta }}_{1},{\tilde{\theta }}_{3}]^{T}\) at \(t=0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Wang, Z. & Zhen, Z. Adaptive neural network finite time control for quadrotor UAV with unknown input saturation. Nonlinear Dyn 98, 1973–1998 (2019). https://doi.org/10.1007/s11071-019-05301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05301-1

Keywords

Navigation