Skip to main content
Log in

Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents full-scale modeling and nonlinear dynamic analysis of sandwich plates with auxetic 3D lattice core, which is further designed to possess three functionally graded (FG) configurations through the plate thickness direction for the first time. The effective Poisson’s ratio (EPR) and fundamental frequencies of auxetic 3D lattice metamaterials are analyzed and verified by static and vibration tests using specimens fabricated by 3D printing. Considering the large deflection nonlinearity of sandwich plates and the accompanying changes in effective properties of lattice microstructures, full-scale FE modeling and nonlinear dynamic thermal–mechanical analysis are performed, with material properties assumed to be temperature dependent. Numerical results revealed that the auxetic core can significantly reduce the dynamic deflections, in comparison with its counterpart with positive EPR. Furthermore, FG configurations have distinct effects on the natural frequencies and dynamic deflection–time curves of sandwich plates, along with EPR–deflection curves in the large deflection region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7, 5111–5129 (2017)

    Google Scholar 

  2. Kshetrimayum, R.S.: A brief intro to metamaterials. IEEE Potentials 23, 44–46 (2004)

    Google Scholar 

  3. Evans, K.E., Nkansah, M.A., Hutchinson, I.J., et al.: Molecular network design. Nature 353, 124–125 (1991)

    Google Scholar 

  4. Shen, H.-S., Li, C., Reddy, J.N.: Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson’s ratio. Comput. Methods Appl. Mech. Eng. 360, 112727 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Yang, J., Huang, X.-H., Shen, H.-S.: Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson’s ratio. Thin Wall. Struct. 148, 106514 (2020)

    Google Scholar 

  6. Lakes, R.S.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)

    Google Scholar 

  7. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  8. Whitty, J.P.M., Alderson, A., Myler, P., Kandola, B.: Towards the design of sandwich panel composites with enhanced mechanical and thermal properties by variation of the in-plane Poisson’s ratios. Compos. A Appl. Sci. Manuf. 34, 525–534 (2003)

    Google Scholar 

  9. Scarpa, F., Blaina, S., Lew, T., et al.: Elastic buckling of hexagonal chiral cell honeycombs. Compos. A Appl. Sci. Manuf. 38, 280–289 (2007)

    Google Scholar 

  10. Magalhaes, R., Subramani, P., Lisner, T., et al.: Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters. Compos. A Appl. Sci. Manuf. 87, 86–97 (2016)

    Google Scholar 

  11. Li, S., Hassanin, H., Attallah, M.M., et al.: The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater. 105, 75–83 (2016)

    Google Scholar 

  12. Xiong, J.P., Gu, D.D., Chen, H.Y., Dai, D.H., Shi, Q.M.: Structural optimization of re-entrant negative Poisson’s ratio structure fabricated by selective laser melting. Mater. Des. 120, 307–316 (2017)

    Google Scholar 

  13. Chen, Y., Fu, M.H.: A novel three-dimensional auxetic lattice metamaterial with enhanced stiffness. Smart Mater. Struct. 26, 105029 (2017)

    Google Scholar 

  14. Lakes, R.S., Elms, K.: Indentability of conventional and negative Poisson’s ratio foams. J. Compos. Mater. 27, 1193–1202 (1993)

    Google Scholar 

  15. Evans, K.E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking! Adv. Mater. 12, 617–628 (2000)

    Google Scholar 

  16. Evans, K.E.: Auxetic polymers: a new range of materials. Endeavour 15, 170–174 (1991)

    Google Scholar 

  17. Scarpa, F., Yates, J.R., Ciffo, L.G., Patsias, S.: Dynamic crushing of auxetic open-cell polyurethane foam, PIME Part C. J. Mech. Eng. Sci. 216, 1153–1156 (2002)

    Google Scholar 

  18. Liu, W., Wang, N., Luo, T., Lin, Z.: In-plane dynamic crushing of re-entrant auxetic cellular structure. Mater. Des. 100, 84–91 (2016)

    Google Scholar 

  19. Hou, S., Liu, T., Zhang, Z., et al.: How does negative Poisson’s ratio of foam filler affect crashworthiness? Mater. Des. 82, 247–259 (2015)

    Google Scholar 

  20. Mohsenizadeh, S., Alipour, R., Shokri Rad, M., et al.: Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading. Mater. Des. 88, 258–268 (2015)

    Google Scholar 

  21. Wang, J., Wang, H., Chen, X.H., Yu, Y.: Experimental and numerical study of the elastic properties of PMI foams. J. Mater. Sci. 45, 2688–2695 (2010)

    Google Scholar 

  22. Wang, J., Waas, A.M., Wang, H.: Experimental and numerical study on low-velocity impact behavior of foam-core sandwich panels. Compos. Struct. 96, 298–311 (2013)

    Google Scholar 

  23. Choi, J.B., Lakes, R.S.: Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int. J. Mech. Sci. 37, 51–59 (1995)

    MATH  Google Scholar 

  24. Duc, N.D., Cong, P.H.: Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs. J. Sandw. Struct. Mater. 20, 692–717 (2018)

    Google Scholar 

  25. Duc, N.D., Kim, S.E., Cong, P.H., Anh, N.T., Khoa, N.D.: Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads. Int. J. Mech. Sci. 133, 504–512 (2017)

    Google Scholar 

  26. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S., Nouri, A.H.: Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory. Int. J. Mech. Sci. 153–154, 391–401 (2019)

    Google Scholar 

  27. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S., Kolahchi, R.: A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment. Eng. Comput. 35, 1141–1157 (2019)

    Google Scholar 

  28. Vinson, J.R.: The Behavior of Sandwich Structures of Isotropic and Composite Materials, 1st edn. Technomic Publishing Company, Lancaster (1999)

    Google Scholar 

  29. Novak, N., Starčevič, L., Vesenjak, M., Ren, Z.: Blast response study of the sandwich composite panels with 3D chiral auxetic core. Compos. Struct. 210, 167–178 (2019)

    Google Scholar 

  30. Imbalzano, G., Tran, P., Ngo, T.D., Lee, P.V.: Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. J. Sandw. Struct. Mater. 19, 291–316 (2015)

    Google Scholar 

  31. Shen, H.-S.: Functionally Graded Materials Nonlinear Analysis of Plates and Shells, 1st edn. CRC Press, Raton (2009)

    Google Scholar 

  32. Shen, H.-S.: Modeling and analysis of functionally graded carbon nanotube reinforced composite structures: a review. Adv. Mech. 46, 478–505 (2016)

    Google Scholar 

  33. Wang, Z.-X., Shen, H.-S.: Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. Nonlinear Dyn. 70, 735–754 (2012)

    MathSciNet  Google Scholar 

  34. Fan, Y., Wang, H.: Nonlinear dynamics of matrix-cracked hybrid laminated plates containing carbon nanotube-reinforced composite layers resting on elastic foundations. Nonlinear Dyn. 84, 1181–1199 (2016)

    MATH  Google Scholar 

  35. Shen, H.-S., Lin, F., Xiang, Y.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn. 90, 899–914 (2017)

    Google Scholar 

  36. Li, X., Song, M., Yang, J., Kitipornchai, S.: Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams. Nonlinear Dyn. 95, 1807–1826 (2019)

    MATH  Google Scholar 

  37. Jia, X.L., Yang, J., Kitipornchai, S., Lim, C.W.: Forced vibration of electrically actuated FGM micro-switches. Procedia Eng. 14, 280–287 (2011)

    Google Scholar 

  38. Jia, X.L., Yang, J., Kitipornchai, S., Lim, C.W.: Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation. J. Sound Vib. 331, 3397–3411 (2012)

    Google Scholar 

  39. Cao, Z., Liang, X., Deng, Y., et al.: Novel semi-analytical solutions for the transient behaviors of functionally graded material plates in the thermal environment. Materials 12, 4084 (2019)

    Google Scholar 

  40. Yang, J., Shen, H.-S.: Non-linear analysis of functionally graded plates under transverse and in-plane loads. Int. J. Non-Linear Mech. 38, 467–482 (2003)

    MATH  Google Scholar 

  41. Marinca, V., Herisanu, N.: The nonlinear thermomechanical vibration of a functionally graded beam on Winkler–Pasternak foundation. MATEC Web Conf. 148, 13004 (2018)

    Google Scholar 

  42. Herisanu, N., Marinca, V., Madescu, G., Dragan, F.: Dynamic response of a permanent magnet synchronous generator to a wind gust. Energies 12, 915 (2019)

    MATH  Google Scholar 

  43. Mahmoudpour, E., Hosseini-Hashemi, S.H., Faghidian, S.A.: A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates. Struct. Eng. Mech. 68, 103–118 (2018)

    Google Scholar 

  44. Wang, Y.Q., Zu, J.W.: Nonlinear steady-state responses of longitudinally travelling functionally graded material plates in contact with liquid. Compos. Struct. 164, 130–144 (2017)

    Google Scholar 

  45. Hou, Y., Tai, Y.H., Lira, C., et al.: The bending and failure of sandwich structures with auxetic gradient cellular cores. Compos. A Appl. Sci. Manuf. 49, 119–131 (2013)

    Google Scholar 

  46. Ma, Z.D., Bian, H., Sun, C., et al: Functionally-graded NPR (negative Poisson’s ratio) material for a blast-protective deflector. In: Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), Michigan, 17–19 Aug 2010, pp. 1–12

  47. Boldrin, L., Hummel, S., Scarpa, F.: Dynamic behavior of auxetic gradient composite hexagonal honeycombs. Compos. Struct. 149, 114–124 (2016)

    Google Scholar 

  48. Li, C., Shen, H.-S., Wang, H.: Nonlinear bending of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Compos. Struct. 212, 317–325 (2019)

    Google Scholar 

  49. Li, C., Shen, H.-S., Wang, H.: Thermal postbuckling of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Int. J. Mech. Sci. 152, 289–297 (2019)

    Google Scholar 

  50. Li, C., Shen, H.-S., Wang, H.: Nonlinear vibration of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Int. J. Struct. Stab. Dyn. 19, 1950034 (2019)

    Google Scholar 

  51. Li, C., Shen, H.-S., Wang, H.: Nonlinear dynamic response of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Eur. Phys. J. Plus 134, 79 (2019)

    Google Scholar 

  52. Li, C., Shen, H.-S., Wang, H., Yu, Z.: Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core. Int. J. Mech. Sci. 174, 105472 (2020)

    Google Scholar 

  53. Li, C., Shen, H.-S., Wang, H.: Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core. Compos. Struct. 237, 111894 (2020)

    Google Scholar 

  54. Raville, M.E., Veng, E.S.: Determination of natural frequencies of vibration of a sandwich plate. Exp. Mech. 7, 490–493 (1967)

    Google Scholar 

  55. Wang, T., Sokolinsky, V., Rajaram, S., Nutt, S.R.: Consistent higher-order free vibration analysis of composite sandwich plates. Comput. Struct. 82, 609–621 (2008)

    Google Scholar 

  56. Nayak, A.K., Shenoi, R.A., Moy, S.S.J.: Dynamic response of composite sandwich plates subjected to initial stresses. Compos. A Appl. Sci. Manuf. 37, 1189–1205 (2006)

    Google Scholar 

  57. Praveen, G.N., Reddy, J.N.: Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The support for this work, provided by the National Natural Science Foundation of China under Grant 51779138, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The relative displacement along x3-direction is twice that of endpoint A:

$$ \begin{aligned} \delta_{3} & = - 2 \cdot \left( {\delta_{3}^{\text{N}} + \delta_{3}^{\text{Q}} + \delta_{3}^{\text{M}} } \right) \\ & = - 2 \cdot \left[ {\frac{{b_{0} r^{2} }}{8EI}\frac{{\partial \left( {N^{2} } \right)}}{\partial P} + \left( {\frac{{b_{0}^{3} }}{24EI} + \frac{{5b_{0} r^{2} \left( {1 + \nu_{c} } \right)}}{18EI}} \right)\frac{{\partial \left( {Q^{2} } \right)}}{\partial P}} \right] \\ \end{aligned} $$
(A.1)

in which the minus sign is added to make this value negative because of the compressive loads, and

$$ \frac{{\partial \left( {N^{2} } \right)}}{\partial P} = 2P{\text{cos}}^{2} \alpha + 2T{\text{cos}}^{2} \alpha $$
(A.2a)
$$ \frac{{\partial \left( {Q^{2} } \right)}}{\partial P} = 2P{\text{sin}}^{2} \alpha - 2T\cos^{2} \alpha. $$
(A.2b)

To calculate the displacement along in-plane direction, two pairs of opposite forces are then applied as virtual additional loads. As illustrated in Fig. 1(d), the internal forces in the incline strut AC are now:

$$ \left\{ {\begin{array}{*{20}l} {N = P\cos \alpha + T\cos \alpha + F\sin \theta } \hfill \\ {Q = T(\begin{array}{*{20}c} 0 & { - 1} & 0 \\ \end{array} ) - T\cos \alpha (\begin{array}{*{20}c} {\sin \theta } & {{{ - a_{0} } \mathord{\left/ {\vphantom {{ - a_{0} } {2b_{0} }}} \right. \kern-0pt} {2b_{0} }}} & {{{ - H_u } \mathord{\left/ {\vphantom {{ - H_u } {2b_{0} }}} \right. \kern-0pt} {2b_{0} }}} \\ \end{array} )} \hfill \\ {\quad \,\,\,\, + P(\begin{array}{*{20}c} 0 & 0 & { - 1} \\ \end{array} ) - P\cos \alpha (\begin{array}{*{20}c} {\sin \theta } & {{{ - a_{0} } \mathord{\left/ {\vphantom {{ - a_{0} } {2b_{0} }}} \right. \kern-0pt} {2b_{0} }}} & {{{ - H_u } \mathord{\left/ {\vphantom {{ - H_u } {2b_{0} }}} \right. \kern-0pt} {2b_{0} }}} \\ \end{array} )} \hfill \\ {\quad \,\,\,\, + F(\begin{array}{*{20}c} 1 & 0 & 0 \\ \end{array} ) - F\sin \theta (\begin{array}{*{20}c} {\sin \theta } & {{{ - a_{0} } \mathord{\left/ {\vphantom {{ - a_{0} } {2b_{0} }}} \right. \kern-0pt} {2b_{0} }}} & {{{ - H_u } \mathord{\left/ {\vphantom {{ - H_u } {2b_{0} }}} \right. \kern-0pt} {2b_{0} }}} \\ \end{array} )} \hfill \\ {M^{2} = \frac{{Q^{2} b_{0}^{2} }}{4}\left( {1 - \frac{2x}{{b_{0} }}} \right)^{2} } \hfill \\ \end{array} } \right.. $$
(A.3)

The relative displacement along in-plane direction is twice that of point C:

$$ \delta_{1} = 2 \cdot \left( {\Delta + \delta_{1}^{\text{N}} + \delta_{1}^{\text{Q}} + \delta_{1}^{\text{M}} } \right) $$
(A.4)

in which

$$ \delta_{1}^{\text{N}} = \left. {\frac{{b_{0} r^{2} }}{8EI}\frac{{\partial \left( {N^{2} } \right)}}{\partial F}} \right|_{F = 0} $$
(A.5a)
$$ \delta_{1}^{\text{Q}} = \frac{{5b_{0} r^{2} \left( {1 + \nu_c } \right)}}{18EI}\left. {\frac{{\partial \left( {Q^{2} } \right)}}{\partial F}} \right|_{F = 0} $$
(A.5b)
$$ \delta_{1}^{M} = \frac{{b_{0}^{3} }}{24EI}\left. {\frac{{\partial \left( {Q^{2} } \right)}}{\partial F}} \right|_{F = 0} $$
(A.5c)

and

$$ \left. {\frac{{\partial \left( {N^{2} } \right)}}{\partial F}} \right|_{F = 0} = 2\sin \theta \left( {P\cos \alpha + T\cos \alpha } \right) $$
(A.6a)
$$ \begin{aligned} \left. {\frac{{\partial \left( {Q^{2} } \right)}}{\partial F}} \right|_{F = 0} & = - 2\left( {\cos^{2} \theta } \right)\left[ {\left( {T + P} \right)\cos \alpha \sin \theta } \right] \\ & \quad + 2\left[ {\left( {\sin \theta } \right)\frac{{a_{0} }}{{2b_{0} }}} \right]\left[ { - T + \left( {T + P} \right)\cos \alpha \frac{{a_{0} }}{{2b_{0} }}} \right] \\ & \quad + 2\left[ {\left( {\sin \theta } \right)\frac{{H_u }}{{2b_{0} }}} \right]\left[ { - P + \left( {T + P} \right)\cos \alpha \frac{{H_u }}{{2b_{0} }}} \right]. \\ \end{aligned} $$
(A.6b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Shen, HS. & Wang, H. Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core. Nonlinear Dyn 100, 3235–3252 (2020). https://doi.org/10.1007/s11071-020-05686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05686-4

Keywords

Navigation