Skip to main content
Log in

Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Interaction solutions between lump and soliton are analytical exact solutions to nonlinear partial differential equations. The explicit expressions of the interaction solutions are of value for analysis of the interacting mechanism. We analyze the one-lump-multi-stripe and one-lump-multi-soliton solutions to nonlinear partial differential equations via Hirota bilinear forms. The one-lump-multi-stripe solutions are generated from the combined solution of quadratic functions and N exponential functions, while the one-lump-multi-soliton solutions from the combined solution of quadratic functions and N hyperbolic cosine functions. Within the context of the derivation of the lump solution and soliton solution, necessary and sufficient conditions are presented for the two types of interaction solutions, respectively, based on the combined solutions to the associated bilinear equations. Applications are made for a (2+1)-dimensional generalized KdV equation, the (2+1)-dimensional NNV system and the (2+1)-dimensional Ito equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The classification of interaction solutions as into the lump-stripe solutions and the lump-soliton solutions is based on the transformation \(u=2\big (\mathrm {ln}\,f\big )_{xx}\). When it comes to the transformation \(u=2\big (\mathrm {ln}\,f\big )_{x}\), the interaction solutions are distinguished as lump-kink solutions.

  2. There exists such kinds of polynomial P, which obeys Eqs. (12) and (13), but generates linear relation among the parameters \(a_{i1},a_{i2},\ldots ,a_{in}\) and \(a_{i,n+1}\) (i.e., \(a_{i1},a_{i2},\ldots ,a_{in}\) and \(a_{i,n+1}\) are linearly dependent). We will take no account of this case.

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons. Nonlinear Evolution Equationa and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Chen, S.J., Yin, Y.H., Ma, W.X., Lü, X.: Abundant exact solutions and interaction phenomena of the (2+1)-dimensional YTSF equation. Anal. Math. Phys. 9(4), 2329–2344 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hua, Y.F., Guo, B.L., Ma, W.X., Lü, X.: Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lü, X., Ma, W.X., Yu, J., Lin, F.H., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model. Nonlinear Dyn. 82(3), 1–10 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xu, H.N., Ruan, W.Y., Zhang, Y., Lü, X.: Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior. Appl. Math. Lett. 99, 105976 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lü, X.: Madelung fluid description on a generalized mixed nonlinear Schrödinger equation. Nonlinear Dyn. 81, 239–247 (2015)

  7. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72(9), 2334–2342 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Lü, X., Ma, W.X., Yu, J., Lin, F.H., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model. Nonlinear Dyn. 82, 1211–1220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, Y.H., Wang, H., Dong, H.H., Zhang, H.S., Temuer, C.: Interaction solutions for a reduced extended (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 92, 487–497 (2018)

    Article  Google Scholar 

  11. Zhang, Y., Liu, Y.P., Tang, X.Y.: M-lump and interactive solutions to a (3+1)-dimensional nonlinear system. Nonlinear Dyn. 93, 2533–2541 (2018)

    Article  MATH  Google Scholar 

  12. Lü, X., Lin, F.H., Qi, F.H.: Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton solutions. Applied Mathematical Modelling 39, 3221–3226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, H.D., Xia, T.C., Hu, B.B.: High-order lumps, high-order breathers and hybrid solutions for an extended (3+1)-dimensional Jimbo-Miwa equation in fluid dynamics. Nonlinear Dyn. 100(1), 601–614 (2020)

    Article  MATH  Google Scholar 

  14. Gao, W., Günerhan, H., Baskonus, H.M.: Analytical and approximate solutions of an epidemic system of HIV/AIDS transmission. Alexandria Eng. J. 59(5), 3197–3211 (2020)

    Article  Google Scholar 

  15. Gao, W., Günerhan, H., Baskonus, H.M.: Novel Dynamic Structures of 2019-nCoV with Nonlocal Operator via Powerful Computational Technique. Biology. 9(5), 107:1–16 (2020)

  16. Gao, W., Veeresha, P., Prakasha, D.G., Baskonus, H.M., Yel, G.: New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function. Chaos, Solitons and Fractals. 134(3), 109696:1–11 (2020)

  17. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29(3), 915–946 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lü, X., Hua, Y.F., Chen, S.J., Tang, X.F.: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws. Commun. Nonlinear Sci. Numer. Simul. 95, 105612 (2021). https://doi.org/10.1016/j.cnsns.2020.105612

  19. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gilson, C.R., Nimmo, J.J.C.: Lump solutions of the BKP equation. Phys. Lett. A 147(8–9), 472–476 (1990)

    Article  MathSciNet  Google Scholar 

  21. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Kadomstev, B.B., Petrviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15(6), 539–541 (1970)

    Google Scholar 

  23. Mulase, M.: Complete integrability of the Kadomtsev-Petviashvili equation. Adv. Math. 54(1), 57–66 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Müller, P., Garrett, C., Osborne, A.: Rogue waves-The Fourteenth ’Aha Huliko’a Hawaiian Winter Workshop. Oceanography 18(3), 66–75 (2005)

    Article  Google Scholar 

  26. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  Google Scholar 

  27. Zhou, Y., Manukure, S., Ma, W.X.: Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation. Commun. Nonlinear Sci. Numer. Simul. 68, 56–62 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, H.: Lump and interaction solutions to the (2+1)-dimensional Burgers equation. Appl. Math. Lett. 85, 27–34 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, H.Q., Chen, A.H.: Lump and lump-kink solutions of the (3+1)-dimensional Jimbo-Miwa and two extended Jimbo-Miwa equations. Appl. Math. Lett. 68, 55–61 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, W.H., Zhang, Y.F., Shi, D.D.: Lump waves, solitary waves and interaction phenomena to the (2+1)-dimensional Konopelchenko-Dubrovsky equation. Phys. Lett. A 383, 97–102 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gai, L.T., Ma, W.X., Li, M.C.: Lump-type solutions, rogue wave type solutions and periodic lump-stripe interaction phenomena to a (3+1)-dimensional generalized breaking soliton equation. Phys. Lett. A 384, 126178 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633–2659 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xia, J.W., Zhao, Y.W., Lü, X.: Predictability, fast calculation and simulation for the interaction solution to the cylindrical Kadomtsev-Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 90, 105260 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yin, Y.H., Ma, W.X., Liu, J.G., Lü, X.: Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76(6), 1275–1283 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Elboree, M.K.: Lump solitons, rogue wave solutions and lump-stripe interaction phenomena to an extended (3+1)-dimensional KP equation. Chin. J. Phys. 63, 290–303 (2020)

    Article  MathSciNet  Google Scholar 

  36. He, X.J., Lü, X., Li, M.G.: Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3 + 1)-dimensional generalized Kadomtsev -Petviashvili equation. Anal. Math. Phys. 11(1), 4 (2021)

    Article  Google Scholar 

  37. Yin, Y.H., Chen, S.J., Lü, X.: Study on localized characteristics of lump and interaction solutions to two extended Jimbo -Miwa equations. Chin. Phys. B 29(12), 120502 (2020)

    Article  Google Scholar 

  38. Chen, S.J., Lü, X., Tang, X.F.: Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 95, 105628 (2021)

    Article  MathSciNet  Google Scholar 

  39. Zhao, H.Q., Ma, W.X.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74, 1399–1405 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, J.Y., Ma, W.X.: Abundant interaction solutions of the KP equation. Nonlinear Dyn. 89, 1539–1544 (2017)

    Article  MathSciNet  Google Scholar 

  41. Ma, Z.Y., Fei, J.X., Chen, J.C.: Lump and stripe soliton solutions to the generalized Nizhnik-Novikov-Veselov equation. Commun. Theor. Phys. 70, 521–528 (2018)

    Article  MathSciNet  Google Scholar 

  42. Dai, C.Q., Zhang, J.F.: Variable separation solutions for the (2+1)-dimensional generalized Nizhnik-Novikov-Veselov equation. Chaos Solit. Fract. 33, 564–571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tan, W., Liu, J., Xie, J.L.: Evolution and emergence of new lump and interaction solutions to the (2+1)-dimensional Nizhnik-Novikov-Veselov system. Phys. Scr. 94, 115204 (2019)

    Article  Google Scholar 

  44. Tang, Y.N., Tao, S.Q., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput. Math. Appl. 72(9), 2334–2342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ma, W.X., Yong, X.L., Zhang, H.Q.: Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75, 289–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Peng, Y.Z.: A class of doubly periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation. Phys. Lett. A 337, 55–60 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, G.Q., Deng, S.F.: Painlevé analysis, integrability and exact solutions for a (2+1)-dimensional generalized Nizhnik-Novikov-Veselov equation. Eur. Phys. J. Plus. 131, 385 (2016)

    Article  Google Scholar 

  48. Ito, M.: An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders. J. Phys. Soc. Jpn. 49(2), 771–778 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation. Chaos Solit. Fract. 47, 27–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Gilson, G., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota D-operators. Proc. R. Soc. Lond. A 452, 223–234 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ma, W.X.: Bilinear equations, Bell polynomials and linear superposition principle. J. Phys: Conf. Ser. 411, 012021 (2013)

    Google Scholar 

  52. Ma, W.X.: Bilinear equations and resonant solutions characterized by Bell polynomials. Rep. Math. Phys. 72(1), 41–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ma, W.X.: Trilinear equations, Bell polynomials, and resonant solutions. Front. Math. China. 8(5), 1139–1156 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu, N.: Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation. Nonlinear Dyn. 82, 311–318 (2015)

    Article  MATH  Google Scholar 

  55. He, C.H., Tang, Y.N., Ma, W.X., Ma, J.L.: Interaction phenomena between a lump and other multi-solitons for the (2+1)-dimensional BLMP and Ito equations. Nonlinear Dyn. 95, 29–42 (2019)

    Article  MATH  Google Scholar 

  56. Isojima, S., Willox, R., Satsuma, J.: On various solutions of the coupled KP equation. J. Phys. A: Math. Gen. 35(32), 6893–6909 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of China (2018RC031), the National Natural Science Foundation of China under Grant No. 71971015 and the Open Fund of IPOC (BUPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Lü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A

The lump solutions to the KPI equation [24] are given as

$$\begin{aligned} u=\frac{4(a_{1}^{2}+a_{5}^{2})f-8(a_{1}g+a_{5}h)^{2}}{f^{2}}, \end{aligned}$$
(A1)

where the functions f,  g and h are as follows:

$$\begin{aligned} f&=\Bigg (a_{1}x+a_{2}y+\frac{a_{1}a_{2}^{2}-a_{1}a_{6}^{2}+2a_{2}a_{5}a_{6}}{a_{1}^{2}+a_{5}^{2}}t+a_{4}\Bigg )^{2}+\Bigg (a_{5}x+a_{6}y+\frac{2a_{1}a_{2}a_{6}-a_{2}^{2}a_{5}+a_{5}a_{6}^{2}}{a_{1}^{2}+a_{5}^{2}}t+a_{8}\Bigg )^{2}\\&\quad +\frac{3(a_{1}^{2}+a_{5}^{2})^{3}}{(a_{1}a_{6}-a_{2}a_{5})^{2}}, \end{aligned}$$
$$\begin{aligned} g=a_{1}x+a_{2}y+\frac{a_{1}a_{2}^{2}-a_{1}a_{6}^{2}+2a_{2}a_{5}a_{6}}{a_{1}^{2}+a_{5}^{2}}t+a_{4},\nonumber \\ h=a_{5}x+a_{6}y+\frac{2a_{1}a_{2}a_{6}-a_{2}^{2}a_{5}+a_{5}a_{6}^{2}}{a_{1}^{2}+a_{5}^{2}}t+a_{8}. \end{aligned}$$
(A2)

Two classes of lump-stripe solutions to the KPI equation [39] are given as

$$\begin{aligned} u_{11}&=\frac{2(2a_{5}^{2}+a_{9}^{2}e^{l})}{f} -\frac{2(2a_{5}h+a_{9}e^{l})^{2}}{f^{2}}, \end{aligned}$$
(A3)

where

$$\begin{aligned} f&=\Bigg (\mu _{1}a_{5}a_{9}y+2\mu _{1}a_{6}a_{9}t+a_{4}\Bigg )^{2}+\Bigg (a_{5}x+a_{6}y-\frac{3a_{5}^{2}a_{9}^{2}-a_{6}^{2}}{a_{5}}t+a_{8}\Bigg )^{2}+e^{a_{9}x+\frac{a_{6}a_{9}}{a_{5}}y -\frac{a_{9}}{a_{5}^{2}}(a_{5}^{2}a_{9}^{2}-a_{6}^{2})t+a_{12}} +\frac{a_{5}^{2}}{a_{9}^{2}},\\ h&=a_{5}x+a_{6}y-\frac{3a_{5}^{2}a_{9}^{2}-a_{6}^{2}}{a_{5}}t+a_{8}, \end{aligned}$$
$$\begin{aligned}&l=a_{9}x+\frac{a_{6}a_{9}}{a_{5}}y -\frac{a_{9}(a_{5}^{2}a_{9}^{2}-a_{6}^{2})}{a_{5}^{2}}t+a_{12}, \end{aligned}$$
(A4)

and

$$\begin{aligned} u_{12}&=\frac{2\bigg [\frac{2}{3a_{9}^{4}}(a_{5}a_{10}-a_{6}a_{9})^{2}+2a_{5}^{2}+a_{9}^{2}e^{l}\bigg ]}{f}-\frac{2\bigg [\frac{2\mu _{2}}{a_{9}^{2}}(a_{5}a_{10}-a_{6}a_{9})g+2a_{5}h+a_{9}e^{l}\bigg ]^{2}}{f^{2}}, \end{aligned}$$
(A5)

where

$$\begin{aligned} f&=\Bigg [\frac{\mu _{2}(a_{5}a_{10}-a_{6}a_{9})}{a_{9}^{2}}x +\frac{3a_{5}a_{9}^{4}+a_{5}a_{10}^{2}-a_{6}a_{9}a_{10}}{3\mu _{2}a_{9}^{3}}y +\frac{3a_{5}a_{9}^{4}a_{10}+3a_{6}a_{9}^{5}+a_{5}a_{10}^{3}-a_{6}a_{9}a_{10}^{2}}{3\mu _{2}a_{9}^{4}}t +a_{4}\Bigg ]^{2}\\&\quad +\Bigg [a_{5}x+a_{6}y -\frac{3a_{5}a_{9}^{4}+a_{5}a_{10}^{2}-2a_{6}a_{9}a_{10}}{a_{9}^{2}}t +a_{8}\Bigg ]^{2} +e^{a_{9}x+a_{10}y -\frac{a_{9}^{4}-a_{10}^{2}}{a_{9}}t+a_{12}}\\&\quad +\frac{3a_{5}^{2}a_{9}^{4}+a_{5}^{2}a_{10}^{2}-2a_{5}a_{6}a_{9}a_{10}+a_{6}^{2}a_{9}^{2}}{3a_{9}^{6}}, \end{aligned}$$
$$\begin{aligned} g&=\frac{\mu _{2}(a_{5}a_{10}-a_{6}a_{9})}{a_{9}^{2}}x +\frac{3a_{5}a_{9}^{4}+a_{5}a_{10}^{2}-a_{6}a_{9}a_{10}}{3\mu _{2}a_{9}^{3}}y+\frac{3a_{5}a_{9}^{4}a_{10}+3a_{6}a_{9}^{5}+a_{5}a_{10}^{3}-a_{6}a_{9}a_{10}^{2}}{3\mu _{2}a_{9}^{4}}t +a_{4},\nonumber \\ h&=a_{5}x+a_{6}y-\frac{3a_{5}a_{9}^{4}+a_{5}a_{10}^{2}-2a_{6}a_{9}a_{10}}{a_{9}^{2}}t +a_{8},\nonumber \\ l&=a_{9}x+a_{10}y -\frac{a_{9}^{4}-a_{10}^{2}}{a_{9}}t+a_{12}, \end{aligned}$$
(A6)

while the constants \(\mu _{1}\) and \(\mu _{2}\) are determined by \(\mu _{1}^{2}-3=0\) and \(3\mu _{2}^{2}-1=0\).

Two classes of lump-soliton solutions to the KPI equation [40] are given as

$$\begin{aligned} u_{21}&=\frac{2\bigg [2a_{1}^{2}+2a_{5}^{2}+\frac{a_{6}^{2}}{3a_{1}^{2}}\cosh (l)\bigg ]}{f}-\frac{2\bigg [2a_{1}g+2a_{5}h+\frac{\mu _{2}a_{6}}{a_{1}}\sinh (l)\bigg ]^{2}}{f^{2}}, \end{aligned}$$
(A7)

where

$$\begin{aligned}&f=\Bigg (a_{1}x-\frac{a_{5}a_{6}}{a_{1}}y-\frac{a_{6}^{2}}{a_{1}}t+a_{4}\Bigg )^{2}+\Bigg (a_{5}x+a_{6}y-\frac{a_{5}a_{6}^{2}}{a_{1}^{2}}t+a_{8}\Bigg )^{2} +\cosh \Bigg (\frac{\mu _{2}a_{6}}{a_{1}}x-\frac{a_{6}^{3}}{9\mu _{2}a_{1}^{3}}t+a_{12}\Bigg )\nonumber \\&\qquad +\frac{36a_{1}^{8}+72a_{1}^{6}a_{5}^{2}+36a_{1}^{4}a_{5}^{4}+a_{6}^{4}}{12a_{1}^{2}a_{6}^{2}(a_{1}^{2}+a_{5}^{2})},\nonumber \\&g=a_{1}x-\frac{a_{5}a_{6}}{a_{1}}y-\frac{a_{6}^{2}}{a_{1}}t+a_{4},\nonumber \\&h=a_{5}x+a_{6}y-\frac{a_{5}a_{6}^{2}}{a_{1}^{2}}t+a_{8},\nonumber \\&l=\frac{\mu _{2}a_{6}}{a_{1}}x-\frac{a_{6}^{3}}{9\mu _{2}a_{1}^{3}}t+a_{12}, \end{aligned}$$
(A8)

and

$$\begin{aligned} u_{22}&=\frac{2\bigg [\frac{a_{7}^{2}}{2a_{9}^{4}}+a_{9}^{2}\cosh (l)\bigg ]}{f} \quad -\frac{2\bigg [-\frac{a_{7}h}{a_{9}^{2}}+a_{9}\sinh (l)\bigg ]^{2}}{f^{2}}, \end{aligned}$$
(A9)

where

$$\begin{aligned}&f=\Bigg (\frac{\mu _{1}a_{7}}{2a_{9}}y-\mu _{1}a_{7}t+a_{4}\Bigg )^{2}+\Bigg (-\frac{a_{7}}{2a_{9}^{2}}x+\frac{a_{7}}{2a_{9}}y+a_{7}t+a_{8}\Bigg )^{2}+\cosh (a_{9}x-a_{9}^{2}y+a_{12}) +\frac{4a_{9}^{12}+a_{7}^{4}}{4a_{7}^{2}a_{9}^{6}},\nonumber \\&g=\frac{\mu _{1}a_{7}}{2a_{9}}y-\mu _{1}a_{7}t+a_{4},\nonumber \\&h=-\frac{a_{7}}{2a_{9}^{2}}x+\frac{a_{7}}{2a_{9}}y+a_{7}t+a_{8},\nonumber \\&l=a_{9}x-a_{9}^{2}y+a_{12}. \end{aligned}$$
(A10)

The lump-stripe solutions to the (2+1)-dimensional NNV system [41] are given as

$$\begin{aligned}&u=\frac{2(2a_{2}g+2a_{6}h+a_{10}e^{l})(2a_{1}g+2a_{5}h+a_{9}e^{l})}{f^{2}} -\frac{2(2a_{1}a_{2}+2a_{5}a_{6}+a_{9}a_{10}e^{l})}{f}+a_{0},\nonumber \\&v=\frac{2(2a_{1}g+2a_{5}h+a_{9}e^{l})^{2}}{f^{2}}-\frac{2(2a_{1}^{2}+2a_{5}^{2}+a_{9}^{2}e^{l})}{f}+\frac{\lambda _{3}}{3\lambda _{1}},\nonumber \\&w=\frac{2(2a_{2}g+2a_{6}h+a_{10}e^{l})^{2}}{f^{2}} -\frac{2(2a_{2}^{2}+2a_{6}^{2}+a_{10}^{2}e^{l})}{f} +\frac{\lambda _{4}}{3\lambda _{2}}, \end{aligned}$$
(A11)

where

$$\begin{aligned} f&=\Bigg [-\frac{a_{6}a_{9}}{a_{10}}x+\frac{a_{5}a_{10}}{a_{9}}y +\frac{3(\lambda _{2}a_{6}a_{10}^{2}-\lambda _{1}a_{5}a_{9}^{2})}{2}t+a_{4}\Bigg ]^{2}+\Bigg [a_{5}x+a_{6}y-\frac{3(\lambda _{1}a_{6}a_{9}^{4}+\lambda _{2}a_{5}a_{10}^{4})}{2a_{9}a_{10}}t+a_{8}\Bigg ]^{2}\nonumber \\&\quad +e^{a_{9}x+a_{10}y+\frac{\lambda _{1}a_{9}^{3}+\lambda _{2}a_{10}^{3}}{2}t+a_{12}},\nonumber \\ g&=-\frac{a_{6}a_{9}}{a_{10}}x+\frac{a_{5}a_{10}}{a_{9}}y +\frac{3(\lambda _{2}a_{6}a_{10}^{2}-\lambda _{1}a_{5}a_{9}^{2})}{2}t+a_{4},\nonumber \\ h&=a_{5}x+a_{6}y-\frac{3(\lambda _{1}a_{6}a_{9}^{4}+\lambda _{2}a_{5}a_{10}^{4})}{2a_{9}a_{10}}t+a_{8},\nonumber \\ l&=a_{9}x+a_{10}y+\frac{\lambda _{1}a_{9}^{3}+\lambda _{2}a_{10}^{3}}{2}t+a_{12}. \end{aligned}$$
(A12)

Associated with the test function

$$\begin{aligned} f=g^{2}+h^{2}+p+q+a_{9}, \end{aligned}$$
(A13)

with

$$\begin{aligned}&g=a_{1}x+a_{2}y+a_{3}t+a_{4},\nonumber \\&h=a_{5}x+a_{6}y+a_{7}t+a_{8},\nonumber \\&p=k_{0}e^{k_{1}x+k_{2}y+k_{3}t},\nonumber \\&q=n_{0}e^{-k_{1}x-k_{2}y-k_{3}t}, \end{aligned}$$
(A14)

where \(a_{i}~(1\le i \le 9),~k_{j}~(0\le j \le 3)\) and \(n_{0}\) are real constants, the lump-soliton solutions to the (2+1)-dimensional NNV system [41] are given as

$$\begin{aligned} u&=\frac{2(2a_{2}g+2a_{6}h+k_{2}p-k_{2}q) (2a_{1}g+2a_{5}h+k_{1}p-k_{1}q)}{f^{2}}-\frac{2(2a_{1}a_{2}+2a_{5}a_{6}+k_{1}k_{2}p+k_{1}k_{2}q)}{f} +a_{0},\nonumber \\ v&=\frac{2(2a_{1}g+2a_{5}h+k_{1}p-k_{1}q)^{2}}{f^{2}} -\frac{2(2a_{1}^{2}+2a_{5}^{2}+k_{1}^{2}p+k_{1}^{2}q)}{f}+\frac{\lambda _{3}}{3\lambda _{1}},\nonumber \\ w&=\frac{2(2a_{2}g+2a_{6}h+k_{2}p-k_{2}q)^{2}}{f^{2}} -\frac{2(2a_{2}^{2}+2a_{6}^{2}+k_{2}^{2}p+k_{2}^{2}q)}{f}+\frac{\lambda _{4}}{3\lambda _{2}}, \end{aligned}$$
(A15)

where

$$\begin{aligned}&f=\Bigg [\frac{a_{6}k_{1}}{k_{2}}x-\frac{a_{5}k_{2}}{k_{1}}y +\frac{3(\lambda _{1}a_{5}k_{1}^{2}-\lambda _{2}a_{6}k_{2}^{2})}{2}t+a_{4}\Bigg ]^{2} +\Bigg [a_{5}x+a_{6}y-\frac{3(\lambda _{1}a_{6}k_{1}^{4}+\lambda _{2}a_{5}k_{2}^{4})}{2k_{1}k_{2}}t+a_{8}\Bigg ]^{2}\nonumber \\&\qquad +k_{0}e^{k_{1}x+k_{2}y+\frac{\lambda _{1}k_{1}^{3}+\lambda _{2}k_{2}^{3}}{2}t} +n_{0}e^{-k_{1}x-k_{2}y-\frac{\lambda _{1}k_{1}^{3}+\lambda _{2}k_{2}^{3}}{2}t} +\frac{2k_{0}n_{0}k_{1}^{2}k_{2}^{2}}{a_{5}^{2}k_{2}^{2}+a_{6}k_{1}^{2}},\nonumber \\&g=\frac{a_{6}k_{1}}{k_{2}}x-\frac{a_{5}k_{2}}{k_{1}}y +\frac{3(\lambda _{1}a_{5}k_{1}^{2}-\lambda _{2}a_{6}k_{2}^{2})}{2}t+a_{4},\nonumber \\&h=a_{5}x+a_{6}y-\frac{3(\lambda _{1}a_{6}k_{1}^{4}+\lambda _{2}a_{5}k_{2}^{4})}{2k_{1}k_{2}}t+a_{8},\nonumber \\&p=k_{0}e^{k_{1}x+k_{2}y+\frac{\lambda _{1}k_{1}^{3}+\lambda _{2}k_{2}^{3}}{2}t},\nonumber \\&q=n_{0}e^{-k_{1}x-k_{2}y-\frac{\lambda _{1}k_{1}^{3}+\lambda _{2}k_{2}^{3}}{2}t}. \end{aligned}$$
(A16)

The lump-stripe solutions and lump-soliton solutions to the (2+1)-dimensional Ito equation [44, 45] are, respectively, given as

$$\begin{aligned} u&=\frac{2(2a_{1}^{2}+2a_{5}^{2}+a_{9}^{2}e^{l})}{f} -\frac{2(2a_{1}g+2a_{5}h+a_{9}e^{l})^{2}}{f^{2}}, \end{aligned}$$
(A17)

where

$$\begin{aligned} f=&\Bigg [a_{1}x+a_{2}y-(\alpha a_{2}+a_{1}\beta )t+a_{4}\Bigg ]^{2}+\Bigg [a_{5}x-\frac{\alpha a_{1}a_{2}+a_{1}^{2}\beta +a_{5}^{2}\beta }{\alpha a_{5}}y +a_{7}t+a_{8}\Bigg ]^{2}\nonumber \\&+e^{a_{9}x+\frac{a_{1}}{a_{5}}(\alpha a_{2}+a_{1}\beta )y+a_{12}} +a_{13},\nonumber \\ g=&a_{1}x+a_{2}y-(\alpha a_{2}+a_{1}\beta )t+a_{4},\nonumber \\ h=&a_{5}x-\frac{\alpha a_{1}a_{2}+a_{1}^{2}\beta +a_{5}^{2}\beta }{\alpha a_{5}}y+a_{7}t+a_{8},\nonumber \\ l=&a_{9}x+\frac{a_{1}(\alpha a_{2}+a_{1}\beta )}{a_{5}}y+a_{12}, \end{aligned}$$
(A18)

and

$$\begin{aligned} u&=\frac{2\bigg [\frac{2a_{5}^{2}a_{7}^{2}}{a_{3}^{2}}+2a_{5}^{2}+a_{9}^{2}\cosh (l)\bigg ]}{f}-\frac{2\bigg [-\frac{2a_{5}a_{7}}{a_{3}}g+2a_{5}h+a_{9}\sinh (l)\bigg ]^{2}}{f^{2}}, \end{aligned}$$
(A19)

where

$$\begin{aligned} f=&\Bigg (-\frac{a_{5}a_{7}}{a_{3}}x-\frac{-a_{5}a_{7}\beta +a_{3}^{2}}{\alpha a_{3}}y+a_{3}t+a_{4}\Bigg )^{2}+\Bigg (a_{5}x-\frac{a_{5}\beta +a_{7}}{\alpha }y+a_{7}t+\frac{a_{4}a_{7}}{a_{3}}\Bigg )^{2}\nonumber \\&+\cosh \Bigg [a_{9}x-\frac{a_{9}(a_{9}^{2}+\beta )}{\alpha }y+a_{12}\Bigg ] +a_{13},\nonumber \\&g=-\frac{a_{5}a_{7}}{a_{3}}x -\frac{-a_{5}a_{7}\beta +a_{3}^{2}}{\alpha a_{3}}y+a_{3}t+a_{4},\nonumber \\&h=a_{5}x-\frac{a_{5}\beta +a_{7}}{\alpha }y+a_{7}t+\frac{a_{4}a_{7}}{a_{3}},\nonumber \\&l=a_{9}x-\frac{a_{9}(a_{9}^{2}+\beta )}{\alpha }y+a_{12}. \end{aligned}$$
(A20)

B

The proof of Theorem 1

Through direct computation by use of the following properties of the Hirota derivatives

$$\begin{aligned}&P(D_{x_{1}},D_{x_{2}},\ldots ,D_{x_{n}},D_{t}) e^{l_{i}}\cdot e^{l_{i}}=0,\\&P(D_{x_{1}},D_{x_{2}},\ldots ,D_{x_{n}},D_{t}) e^{l_{i}}\cdot e^{l_{j}}=P(a_{i1}-a_{j1},a_{i2}-a_{j2}, \ldots ,a_{i,n+1}-a_{j,n+1})e^{l_{i}+l_{j}}, \end{aligned}$$

it now follows from Eq. (11) to have

$$\begin{aligned}&0=P\Big (g^{2}+h^{2}+m+\sum \limits _{i=1}^{N}e^{l_{i}}\Big )\cdot \Big (g^{2}+h^{2}+m +\sum \limits _{i=1}^{N}e^{l_{i}}\Big )\\ =&P(g^{2}+h^{2}+m)\cdot (g^{2}+h^{2}+m) +2P(g^{2}+h^{2}+m)\cdot \Big (\sum \limits _{i=1}^{N}e^{l_{i}}\Big ) +P\Big (\sum \limits _{i=1}^{N}e^{l_{i}}\Big )\cdot \Big (\sum \limits _{i=1}^{N}e^{l_{i}}\Big )\\ =&P(g^{2}+h^{2}+m)\cdot (g^{2}+h^{2}+m)+2\sum \limits _{i=1}^{N}P(g^{2}+h^{2}+m)\cdot e^{l_{i}}+\sum \limits _{i=1}^{N}P (e^{l_{i}}\cdot e^{l_{i}})+2\sum \limits _{i\ne j}P (e^{l_{i}}\cdot e^{l_{j}})\\&\Leftrightarrow \left\{ \begin{aligned}&P(g^{2}+h^{2}+m)\cdot (g^{2}+h^{2}+m)=0,\\&\sum \limits _{i=1}^{N}P(g^{2}+h^{2}+m)\cdot e^{l_{i}}=0,\\&\sum \limits _{i\ne j}P(a_{i1}-a_{j1},a_{i2}-a_{j2}, \ldots ,a_{i,n+1}-a_{j,n+1})e^{l_{i}+l_{j}}=0, \end{aligned} \right. \\&\Leftrightarrow \left\{ \begin{aligned}&P(g^{2}+h^{2}+m)\cdot (g^{2}+h^{2}+m)=0,\\&P(g^{2}+h^{2}+m)\cdot e^{l_{i}}=0,~~i=1,2,\ldots ,N,\\&P(a_{i1}-a_{j1},a_{i2}-a_{j2}, \ldots ,a_{i,n+1}-a_{j,n+1})=0,~~i\ne j,~i,j=1,2,\ldots ,N. \end{aligned} \right. \end{aligned}$$

The proof is finished. \(\square \)

The proof of Theorem 2

Substituting the combined solution f in Eq. (20) into Eq. (11), we get

$$\begin{aligned} 0=&P\Big (g^{2}+h^{2}+m+\sum \limits _{i=1}^{N}\cosh {l_{i}}+c\Big )\cdot \Big (g^{2}+h^{2}+m +\sum \limits _{i=1}^{N}\cosh {l_{i}}+c\Big )\nonumber \\ =&P(g^{2}+h^{2}+m)\cdot (g^{2}+h^{2}+m)+2P(g^{2}+h^{2}+m)\cdot c+2P(g^{2}+h^{2}+m)\cdot \Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )\nonumber \\&+2P(g^{2}+h^{2}+m)\cdot \Big (\sum \limits _{i=1}^{N}\frac{e^{-l_{i}}}{2}\Big ) +2P\Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )\cdot c+2P\Big (\sum \limits _{i=1}^{N}\frac{e^{-l_{i}}}{2}\Big )\cdot c+P\Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )\cdot \Big (\sum \limits _{i=1}^{N} \frac{e^{l_{i}}}{2}\Big )\nonumber \\&\quad +P\Big (\sum \limits _{i=1}^{N}\frac{e^{-l_{i}}}{2}\Big )\cdot \Big (\sum \limits _{i=1}^{N} \frac{e^{-l_{i}}}{2}\Big )+2P\Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )\cdot \Big (\sum \limits _{i=1}^{N} \frac{e^{-l_{i}}}{2}\Big ). \end{aligned}$$
(B1)

In virtue of the following identities

$$\begin{aligned}&P\Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )\cdot \Big (\sum \limits _{i=1}^{N} \frac{e^{l_{i}}}{2}\Big ) =\sum \limits _{i\ne j}\frac{1}{4}P(a_{i1}-a_{j1},a_{i2}-a_{j2}, \ldots ,a_{i,n+1}-a_{j,n+1})e^{l_{i}+l_{j}},\nonumber \\&P\Big (\sum \limits _{i=1}^{N}\frac{e^{-l_{i}}}{2}\Big )\cdot \Big (\sum \limits _{i=1}^{N} \frac{e^{-l_{i}}}{2}\Big ) =\sum \limits _{i\ne j}\frac{1}{4}P(a_{j1}-a_{i1},a_{j2}-a_{i2}, \ldots ,a_{j,n+1}-a_{i,n+1})e^{-(l_{i}+l_{j})},\\&2P\Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )\cdot \Big (\sum \limits _{i=1}^{N} \frac{e^{-l_{i}}}{2}\Big )=\sum \limits _{i=1}^{N}\frac{1}{2}P(2a_{i1},2a_{i2}, \ldots ,2a_{i,n+1})+\sum \limits _{i\ne j}\frac{1}{2}P(a_{i1}+a_{j1},a_{i2}+a_{j2}, \ldots ,a_{i,n+1}+a_{j,n+1})e^{l_{i}-l_{j}}, \end{aligned}$$

we rewrite Eq. (B1) as

$$\begin{aligned} 0=&P(g^{2}+h^{2}+m)\cdot (g^{2}+h^{2}+m)+2P(g^{2}+h^{2}+m)\cdot c+2P(g^{2}+h^{2}+m)\cdot \Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )\\&+2P(g^{2}+h^{2}+m)\cdot \Big (\sum \limits _{i=1}^{N}\frac{e^{-l_{i}}}{2}\Big ) +2P\Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )\cdot c+2P\Big (\sum \limits _{i=1}^{N}\frac{e^{-l_{i}}}{2}\Big )\cdot c\\&+\sum \limits _{i\ne j}\frac{1}{4}P(a_{i1}-a_{j1},a_{i2}-a_{j2}, \ldots ,a_{i,n+1}-a_{j,n+1})e^{l_{i}+l_{j}}\\&+\sum \limits _{i\ne j}\frac{1}{4}P(a_{j1}-a_{i1},a_{j2}-a_{i2}, \ldots ,a_{j,n+1}-a_{i,n+1})e^{-(l_{i}+l_{j})}\\&+\sum \limits _{i=1}^{N}\frac{1}{2}P(2a_{i1},2a_{i2}, \ldots ,2a_{i,n+1})+\sum \limits _{i\ne j}\frac{1}{2}P(a_{i1}+a_{j1},a_{i2}+a_{j2}, \ldots ,a_{i,n+1}+a_{j,n+1})e^{l_{i}-l_{j}} \end{aligned}$$
$$\begin{aligned}&\Leftrightarrow \left\{ \begin{aligned}&P(g^{2}+h^{2}+m)\cdot (g^{2}+h^{2}+m)=0,\\&P(g^{2}+h^{2}+m)\cdot \Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )=0,\\&P(g^{2}+h^{2}+m)\cdot \Big (\sum \limits _{i=1}^{N}\frac{e^{-l_{i}}}{2}\Big )=0,\\&P\Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )\cdot c=0,\\&P\Big (\sum \limits _{i=1}^{N}\frac{e^{-l_{i}}}{2}\Big )\cdot c=0,\\&\sum \limits _{i\ne j}P(a_{i1}-a_{j1},a_{i2}-a_{j2}, \ldots ,a_{i,n+1}-a_{j,n+1})e^{l_{i}+l_{j}}=0,\\&\sum \limits _{i\ne j}P(a_{j1}-a_{i1},a_{j2}-a_{i2}, \ldots ,a_{j,n+1}-a_{i,n+1})e^{-(l_{i}+l_{j})}=0,\\&P(g^{2}+h^{2}+m)\cdot c+\sum \limits _{i=1}^{N}\frac{1}{4}P(2a_{i1},2a_{i2}, \ldots ,2a_{i,n+1})=0,\\&\sum \limits _{i\ne j}P(a_{i1}+a_{j1},a_{i2}+a_{j2}, \ldots ,a_{i,n+1}+a_{j,n+1})e^{l_{i}-l_{j}}=0. \end{aligned} \right. \end{aligned}$$
(B2)

Keeping in mind of the properties in Eqs. (12) and  (17), we hereby simplify Eqs. (B2) into

$$\begin{aligned} \quad \left\{ \begin{aligned}&P(g^{2}+h^{2}+m)\cdot (g^{2}+h^{2}+m)=0,\\&P(g^{2}+h^{2}+m)\cdot \Big (\sum \limits _{i=1}^{N}\frac{e^{l_{i}}}{2}\Big )=0,\\&\sum \limits _{i\ne j}P(a_{i1}-a_{j1},a_{i2}-a_{j2}, \ldots ,a_{i,n+1}-a_{j,n+1})e^{l_{i}+l_{j}}=0,\\&P(g^{2}+h^{2}+m)\cdot c+\sum \limits _{i=1}^{N}\frac{1}{4}P(2a_{i1},2a_{i2}, \ldots ,2a_{i,n+1})=0,\\&\sum \limits _{i\ne j}P(a_{i1}+a_{j1},a_{i2}+a_{j2}, \ldots ,a_{i,n+1}+a_{j,n+1})e^{l_{i}-l_{j}}=0, \end{aligned} \right. \end{aligned}$$

which are equivalent to

$$\begin{aligned} \left\{ \begin{aligned}&P(g^{2}+h^{2}+m)\cdot (g^{2}+h^{2}+m)=0,\\&P(g^{2}+h^{2}+m)\cdot e^{l_{i}}=0,~~i=1,2,\ldots ,N,\\&P(a_{i1}-a_{j1},a_{i2}-a_{j2}, \ldots ,a_{i,n+1}-a_{j,n+1})=0,~~i\ne j,~i,j=1,2,\ldots ,N,\\ {}&P(g^{2}+h^{2}+m)\cdot c+\sum \limits _{i=1}^{N}\frac{1}{4} P(2a_{i1},2a_{i2},\ldots ,2a_{i,n+1})=0,\\&P(a_{i1}+a_{j1},a_{i2}+a_{j2}, \ldots ,a_{i,n+1}+a_{j,n+1})=0,~~i\ne j,~i,j=1,2,\ldots ,N. \end{aligned} \right. \end{aligned}$$

The proof is finished. \(\square \)

C

The one-lump-multi-stripe solutions to the (2+1)-dimensional generalized KdV equation (26) are derived as

$$\begin{aligned} u&=\frac{2\bigg (2m_{11}^{2}+2m_{21}^{2}+\sum \limits _{i=1}^{N}a_{i1}^{2}e^{l_{i}}\bigg )}{f}-\frac{2\bigg (2m_{11}g+2m_{21}h+\sum \limits _{i=1}^{N}a_{i1}e^{l_{i}}\bigg )^{2}}{f^{2}}, \end{aligned}$$
(C1)

where

$$\begin{aligned} f&=\Bigg (m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y -m_{11}t+m_{14}\Bigg )^{2}+\Bigg (m_{21}x+m_{22}y-m_{21}t+m_{24}\Bigg )^{2}+m\nonumber \\&\quad +\sum \limits _{i=1}^{N}e^{a_{i1}x-a_{i1}y-(a_{i1}^{3}+a_{i1})t+a_{i4}},\nonumber \\ g&=m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y -m_{11}t+m_{14},\nonumber \\ h&=m_{21}x+m_{22}y-m_{21}t+m_{24},\nonumber \\ l_{i}&=a_{i1}x-a_{i1}y-(a_{i1}^{3}+a_{i1})t+a_{i4},~~i=1,2,\ldots ,N, \end{aligned}$$
(C2)

while \(m_{11}m_{22}+\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}m_{21}\ne 0\), and \(m>0\) is an arbitrary constant.

The one-lump-one-stripe solutions to the (2+1)-dimensional generalized KdV equation (26) are derived as

$$\begin{aligned} u&=\frac{2\bigg (2m_{11}^{2}+2m_{21}^{2}+a_{11}^{2}e^{l_{1}}\bigg )}{f}-\frac{2\bigg (2m_{11}g+2m_{21}h+a_{11}e^{l_{1}}\bigg )^{2}}{f^{2}}, \end{aligned}$$
(C3)

where

$$\begin{aligned}&f=\Bigg (m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y -m_{11}t+m_{14}\Bigg )^{2}+\Bigg (m_{21}x+m_{22}y-m_{21}t+m_{24}\Bigg )^{2}+m\nonumber \\&\qquad +e^{a_{11}x-a_{11}y-(a_{11}^{3}+a_{11})t+a_{14}},\nonumber \\&g=m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y -m_{11}t+m_{14},\nonumber \\&h=m_{21}x+m_{22}y-m_{21}t+m_{24},\nonumber \\&l_{1}=a_{11}x-a_{11}y-(a_{11}^{3}+a_{11})t+a_{14}. \end{aligned}$$
(C4)

The one-lump-two-stripe solutions to the (2+1)-dimensional generalized KdV equation (26) are derived as

$$\begin{aligned} u&=\frac{2\bigg (2m_{11}^{2}+2m_{21}^{2}+a_{11}^{2}e^{l_{1}}+a_{21}^{2}e^{l_{2}}\bigg )}{f}-\frac{2\bigg (2m_{11}g+2m_{21}h+a_{11}e^{l_{1}}+a_{21}e^{l_{2}}\bigg )^{2}}{f^{2}}, \end{aligned}$$
(C5)

where

$$\begin{aligned}&f=\Bigg (m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y -m_{11}t+m_{14}\Bigg )^{2}+\Bigg (m_{21}x+m_{22}y-m_{21}t+m_{24}\Bigg )^{2}+m\nonumber \\&\qquad +e^{a_{11}x-a_{11}y-(a_{11}^{3}+a_{11})t+a_{14}}+e^{a_{21}x-a_{21}y-(a_{21}^{3}+a_{21})t+a_{24}},\nonumber \\&g=m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y -m_{11}t+m_{14},\nonumber \\&h=m_{21}x+m_{22}y-m_{21}t+m_{24},\nonumber \\&l_{1}=a_{11}x-a_{11}y-(a_{11}^{3}+a_{11})t+a_{14},\nonumber \\&l_{2}=a_{21}x-a_{21}y-(a_{21}^{3}+a_{21})t+a_{24}. \end{aligned}$$
(C6)

The one-lump-three-stripe solutions to the (2+1)-dimensional generalized KdV equation (26) are derived as

$$\begin{aligned} u&=\frac{2\bigg (2m_{11}^{2}+2m_{21}^{2}+a_{11}^{2}e^{l_{1}}+a_{21}^{2}e^{l_{2}}+a_{31}^{2}e^{l_{3}}\bigg )}{f}-\frac{2\bigg (2m_{11}g+2m_{21}h+a_{11}e^{l_{1}}+a_{21}e^{l_{2}}+a_{31}e^{l_{3}}\bigg )^{2}}{f^{2}}, \end{aligned}$$
(C7)

where

$$\begin{aligned}&f=\Bigg (m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y -m_{11}t+m_{14}\Bigg )^{2}+\Bigg (m_{21}x+m_{22}y-m_{21}t+m_{24}\Bigg )^{2}+m\nonumber \\&\qquad +e^{a_{11}x-a_{11}y-(a_{11}^{3}+a_{11})t+a_{14}}+e^{a_{21}x-a_{21}y-(a_{21}^{3}+a_{21})t+a_{24}}+ e^{a_{31}x-a_{31}y-(a_{31}^{3}+a_{31})t+a_{34}},\nonumber \\&g=m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y -m_{11}t+m_{14},\nonumber \\&h=m_{21}x+m_{22}y-m_{21}t+m_{24},\nonumber \\&l_{1}=a_{11}x-a_{11}y-(a_{11}^{3}+a_{11})t+a_{14},\nonumber \\&l_{2}=a_{21}x-a_{21}y-(a_{21}^{3}+a_{21})t+a_{24},\nonumber \\&l_{3}=a_{31}x-a_{31}y-(a_{31}^{3}+a_{31})t+a_{34}. \end{aligned}$$
(C8)

The one-lump-multi-soliton solutions to the (2+1)-dimensional generalized KdV equation (26) are derived as

$$\begin{aligned} u&=\frac{2\bigg [2m_{11}^{2}+2m_{21}^{2}+\sum \limits _{i=1}^{N}a_{i1}^{2}\cosh (l_{i})\bigg ]}{f}-\frac{2\bigg [2m_{11}g+2m_{21}h+\sum \limits _{i=1}^{N}a_{i1}\sinh (l_{i})\bigg ]^{2}}{f^{2}}, \end{aligned}$$
(C9)

where

$$\begin{aligned}&f=\Bigg (m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y-m_{11}t+m_{14}\Bigg )^{2} +\qquad \Bigg (m_{21}x+m_{22}y-m_{21}t+m_{24}\Bigg )^{2}+m\\&\qquad +\sum \limits _{i=1}^{N}\cosh [a_{i1}x-a_{i1}y-(a_{i1}^{3}+a_{i1})t+a_{i4}]+c, \end{aligned}$$

while g,  h and \(l_{i}\) are as the same as these in Eq. (C2), and \(m >0\) and \(c>0\) are arbitrary constants. To guarantee that two vectors \((m_{11},m_{12})\) and \((m_{21},m_{22})\) in the (xy)-plane are not parallel, the condition \(m_{11}m_{22}+\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}m_{21}\ne 0\) needs to be satisfied.

The one-lump-one-soliton solutions to the (2+1)-dimensional generalized KdV equation (26) are derived as

$$\begin{aligned} u&=\frac{2\bigg [2m_{11}^{2}+2m_{21}^{2}+a_{11}^{2}\cosh (l_{1})\bigg ]}{f}-\frac{2\bigg [2m_{11}g+2m_{21}h+a_{11}\sinh (l_{1})\bigg ]^{2}}{f^{2}}, \end{aligned}$$
(C10)

where

$$\begin{aligned} f=&\Bigg (m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y-m_{11}t+m_{14}\Bigg )^{2} +\Bigg (m_{21}x+m_{22}y-m_{21}t+m_{24}\Bigg )^{2}+m\\&+\cosh [a_{11}x-a_{11}y-(a_{11}^{3}+a_{11})t+a_{14}]+c, \end{aligned}$$

while g,  h and \(l_{1}\) are as the same as these in Eq. (C4), and \(m >0\) and \(c>0\) are arbitrary constants.

The one-lump-two-soliton solutions to the (2+1)-dimensional generalized KdV equation (26) are derived as

$$\begin{aligned} u&=\frac{2\bigg [2m_{11}^{2}+2m_{21}^{2}+a_{11}^{2}\cosh (l_{1})+a_{21}^{2}\cosh (l_{2})\bigg ]}{f}-\frac{2\bigg [2m_{11}g+2m_{21}h+a_{11}\sinh (l_{1})+a_{21}\sinh (l_{2})\bigg ]^{2}}{f^{2}}, \end{aligned}$$
(C11)

where

$$\begin{aligned} f=&\Bigg (m_{11}x-\frac{m_{11}^{2}+m_{21}^{2}+m_{21}m_{22}}{m_{11}}y-m_{11}t+m_{14}\Bigg )^{2} +\Bigg (m_{21}x+m_{22}y-m_{21}t+m_{24}\Bigg )^{2}+m\\&+\cosh [a_{11}x-a_{11}y-(a_{11}^{3}+a_{11})t+a_{14}]+\cosh [a_{21}x-a_{21}y-(a_{21}^{3}+a_{21})t+a_{24}]+c, \end{aligned}$$

while g,  h and \(l_{1}\) are as the same as these in Eq. (C6), and \(m >0\) and \(c>0\) are arbitrary constants.

The one-lump-multi-stripe solutions to the NNV system (8) with \(\lambda _{2}=0\) are derived as

$$\begin{aligned}&u=\frac{2\Big (-\frac{2m_{21}m_{22}g}{m_{12}}+2m_{21}h+ \sum \limits _{i=1}^{N}a_{i1}e^{l_{i}}\Big ) (2m_{12}g+2m_{22}h)}{f^{2}},\nonumber \\&v=\frac{2\bigg (-\frac{2m_{21}m_{22}}{m_{12}}g+2m_{21}h+ \sum \limits _{i=1}^{N}a_{i1}e^{l_{i}}\bigg )^{2}}{f^{2}}-\frac{2\bigg (\frac{2m_{21}^{2}m_{22}^{2}}{m_{12}^{2}}+ 2m_{21}^{2}+\sum \limits _{i=1}^{N}a_{i1}^{2}e^{l_{i}}\bigg )}{f}+v_0,\nonumber \\&w=\frac{2(2m_{12}g+2m_{22}h)^{2}}{f^{2}}-\frac{2(2m_{12}^{2}+2m_{22}^{2})}{f}+w_{0}, \end{aligned}$$
(C12)

where

$$\begin{aligned} f&=\Bigg (-\frac{m_{21}m_{22}}{m_{12}}x+m_{12}y-\frac{3\lambda _{1} v_{0}m_{21}m_{22}-\lambda _{3}m_{21}m_{22}+\lambda _{4}m_{12}^{2}}{m_{12}}t+m_{14}\Bigg )^{2}\nonumber \\&\quad +\Bigg (m_{21}x+m_{22}y+(3\lambda _{1} v_{0}m_{21}-\lambda _{3}m_{21}-\lambda _{4}m_{22})t+m_{24}\Bigg )^{2}+m+\sum \limits _{i=1}^{N} e^{a_{i1}x-(\lambda _{1} a_{i1}^{3}-3a_{i1}\lambda _{1} v_{0}+a_{i1}\lambda _{3})t+a_{i4}},\nonumber \\ g&=-\frac{m_{21}m_{22}}{m_{12}}x+m_{12}y-\frac{3\lambda _{1} v_{0}m_{21}m_{22}-\lambda _{3}m_{21}m_{22}+\lambda _{4}m_{12}^{2}}{m_{12}}t+m_{14},\nonumber \\ h&=m_{21}x+m_{22}y+(3\lambda _{1} v_{0}m_{21}-\lambda _{3}m_{21}-\lambda _{4}m_{22})t+m_{24},\nonumber \\ l_{i}&=a_{i1}x-(\lambda _{1} a_{i1}^{3}-3a_{i1}\lambda _{1} v_{0}+a_{i1}\lambda _{3})t+a_{i4},~~i=1,2,\ldots ,N, \end{aligned}$$
(C13)

while \(-\frac{m_{21}m_{22}}{m_{12}}m_{22}-m_{12}m_{21}\ne 0\), and \(m > 0,~v_{0}\) and \(w_{0}\) are two arbitrary constants.

The one-lump-multi-soliton solutions to the NNV system (8) with \(\lambda _{2}=0\) are derived as

$$\begin{aligned} u&=\frac{2\Big [-\frac{2m_{21}m_{22}g}{m_{12}}+2m_{21}h+ \sum \limits _{i=1}^{N}a_{i1}\sinh (l_{i})\Big ] (2m_{12}g+2m_{22}h)}{f^{2}},\nonumber \\ v&=\frac{2\Bigg [-\frac{2m_{21}m_{22}}{m_{12}}g+2m_{21}h+ \sum \limits _{i=1}^{N}a_{i1}\sinh (l_{i})\Bigg ]^{2}}{f^{2}}-\frac{2\bigg [\frac{2m_{21}^{2}m_{22}^{2}}{m_{12}^{2}}+ 2m_{21}^{2}+\sum \limits _{i=1}^{N}a_{i1}^{2}\cosh (l_{i})\Bigg ]}{f}+v_0,\nonumber \\ w&=\frac{2(2m_{12}g+2m_{22}h)^{2}}{f^{2}}-\frac{2(2m_{12}^{2}+2m_{22}^{2})}{f}+w_{0}, \end{aligned}$$
(C14)

where

$$\begin{aligned}&f=\Bigg (-\frac{m_{21}m_{22}}{m_{12}}x+m_{12}y-\frac{3\lambda _{1} v_{0}m_{21}m_{22}-\lambda _{3}m_{21}m_{22}+\lambda _{4}m_{12}^{2}}{m_{12}}t+m_{14}\Bigg )^{2}\nonumber \\&\qquad +\Bigg (m_{21}x+m_{22}y+(3\lambda _{1} v_{0}m_{21}-\lambda _{3}m_{21}-\lambda _{4}m_{22})t+m_{24}\Bigg )^{2} +m\nonumber \\&\qquad +\sum \limits _{i=1}^{N} \cosh [a_{i1}x-(\lambda _{1} a_{i1}^{3}-3a_{i1}\lambda _{1} v_{0}+a_{i1}\lambda _{3})t +a_{i4}] +c, \end{aligned}$$
(C15)

while g,  h and \(l_{i}\) are as the same as these in Eq. (C13), \(m > 0\), \(c>0\), \(v_{0}\) and \(w_{0}\) are arbitrary constants. Moreover, the condition \(-\frac{m_{21}m_{22}}{m_{12}}m_{22}-m_{12}m_{21}\ne 0\) needs to be satisfied.

For the parameters of Class 1, the one-lump-multi-stripe solutions to the (2+1)-dimensional Ito equation (9) can be expressed as

$$\begin{aligned} u_{11}&=\frac{2\bigg (2m_{11}^{2}+\sum \limits _{i=1}^{N}a_{i1}^{2}e^{l_{i}}\bigg )}{f} -\frac{2\bigg (2m_{11}g+\sum \limits _{i=1}^{N}a_{i1}e^{l_{i}}\bigg )^{2}}{f^{2}}, \end{aligned}$$
(C16)

where

$$\begin{aligned}&f=\Bigg (m_{11}x-\frac{\beta m_{11}}{\alpha }y+m_{14}\Bigg )^{2}+\Bigg (m_{22}y-\alpha m_{22}t\Bigg )^{2}+m+\sum \limits _{i=1}^{N} e^{a_{i1}x-\frac{a_{i1}}{\alpha }(a_{i1}^{2}+\beta )y+a_{i4}},\nonumber \\&g=m_{11}x-\frac{\beta m_{11}}{\alpha }y+m_{14},\nonumber \\&l_{i}=a_{i1}x-\frac{a_{i1}(a_{i1}^{2}+\beta )}{\alpha }y+a_{i4},~~i=1,2,\ldots ,N, \end{aligned}$$
(C17)

while \(m_{11}m_{22}\ne 0\) and \(m > 0\) is an arbitrary constant.

The parameters of Class 2 give rise to the one-lump-multi-stripe solutions to the (2+1)-dimensional Ito equation (9) as

$$\begin{aligned} u_{12}=&\frac{2\bigg [\frac{2m_{23}^{2}}{m_{13}^{2}\beta ^{2}}(\alpha m_{22}+m_{23})^{2}+\frac{2}{\beta ^{2}}(\alpha m_{22}+m_{23})^{2}+\sum \nolimits _{i=1}^{N}a_{i1}^{2}e^{l_{i}}\bigg ]}{f}\nonumber \\&-\frac{2\bigg [\frac{2m_{23}}{m_{13}\beta }(\alpha m_{22}+m_{23})h- \frac{2}{\beta }(\alpha m_{22}+m_{23})h+\sum \nolimits _{i=1}^{N}a_{i1}e^{l_{i}}\bigg ]^{2}}{f^{2}}, \end{aligned}$$
(C18)

where

$$\begin{aligned}&f=\Bigg (\frac{(\alpha m_{22}+m_{23})m_{23}}{m_{13}\beta }x-\frac{\alpha m_{22}m_{23}+m_{13}^{2}+m_{23}^{2}}{\alpha m_{13}}y+m_{13}t+m_{14}\Bigg )^{2}\nonumber \\&\qquad +\Bigg (-\frac{\alpha m_{22}+m_{23}}{\beta }x+m_{22}y+m_{23}t+m_{24}\Bigg )^{2}+m +\sum \limits _{i=1}^{N} e^{a_{i1}x-\frac{a_{i1}}{\alpha }(a_{i1}^{2}+\beta )y+a_{i4}}\nonumber \\&g=\frac{(\alpha m_{22}+m_{23})m_{23}}{m_{13}\beta }x-\frac{\alpha m_{22}m_{23}+m_{13}^{2}+m_{23}^{2}}{\alpha m_{13}}y+m_{13}t+m_{14},\nonumber \\&h=-\frac{\alpha m_{22}+m_{23}}{\beta }x+m_{22}y+m_{23}t+m_{24},\nonumber \\&l_{i}=a_{i1}x-\frac{a_{i1}}{\alpha }(a_{i1}^{2}+\beta )y+a_{i4},~~i=1,2,\ldots ,N, \end{aligned}$$
(C19)

while \(\frac{m_{23}(\alpha m_{22}+m_{23})}{m_{13}\beta }m_{22}-\frac{\alpha m_{22}m_{23}+m_{13}^{2}+m_{23}^{2}}{\alpha m_{13}}\frac{\alpha m_{22}+m_{23}}{\beta } \ne 0\) and \(m > 0\) is an arbitrary constant.

For the parameters of Class 1, we have the one-lump-multi-soliton solutions to the (2+1)-dimensional Ito equation (9) as

$$\begin{aligned} u_{21}&=\frac{2\bigg [2m_{11}^{2}+\sum \limits _{i=1}^{N}a_{i1}^{2}\cosh (l_{i})\bigg ]}{f}-\frac{2\bigg [2m_{11}g+\sum \limits _{i=1}^{N}a_{i1}\sinh (l_{i})\bigg ]^{2}}{f^{2}}, \end{aligned}$$
(C20)

where

$$\begin{aligned} f&=\Bigg (m_{11}x-\frac{\beta m_{11}}{\alpha }y+m_{14}\Bigg )^{2} +\Bigg (m_{22}y-\alpha m_{22}t\Bigg )^{2}+m +\sum \limits _{i=1}^{N} \cosh \Bigg (a_{i1}x-\frac{a_{i1}(a_{i1}^{2}+\beta )}{\alpha }y+a_{i4}\Bigg )+c, \end{aligned}$$
(C21)

while g and \(l_{i}\) are as the same as these in Eq. (C17), and \(m > 0\) and \(c>0\) are arbitrary constants. The condition \(m_{11}m_{22}\ne 0\) needs to be satisfied.

The parameters of Class 2 yield the one-lump-multi-soliton solutions to the (2+1)-dimensional Ito equation (9) as

$$\begin{aligned} u_{22}=&\frac{2\bigg [\frac{2m_{23}^{2}}{m_{13}^{2}\beta ^{2}}(\alpha m_{22}+m_{23})^{2}+\frac{2}{\beta ^{2}}(\alpha m_{22}+m_{23})^{2}+\sum \limits _{i=1}^{N}a_{i1}^{2}\cosh (l_{i})\bigg ]}{f}\nonumber \\&-\frac{2\bigg [\frac{2m_{23}}{m_{13}\beta }(\alpha m_{22}+m_{23})h- \frac{2}{\beta }(\alpha m_{22}+m_{23})h+\sum \limits _{i=1}^{N}a_{i1}\cosh (l_{i})\bigg ]^{2}}{f^{2}}, \end{aligned}$$
(C22)

where

$$\begin{aligned} f=&\Bigg (\frac{(\alpha m_{22}+m_{23})m_{23}}{m_{13}\beta }x -\frac{\alpha m_{22}m_{23}+m_{13}^{2}+m_{23}^{2}}{\alpha m_{13}}y+m_{13}t+m_{14}\Bigg )^{2}\nonumber \\&+\Bigg (-\frac{\alpha m_{22}+m_{23}}{\beta }x+m_{22}y+m_{23}t+m_{24}\Bigg )^{2}+m +\sum \limits _{i=1}^{N} \cosh \Bigg (a_{i1}x-\frac{a_{i1}}{\alpha }(a_{i1}^{2}+\beta )y+a_{i4}\Bigg )+c, \end{aligned}$$
(C23)

while g,  h and \(l_{i}\) are as the same as these in Eq. (C19), \(m > 0\) and \(c>0\) are constants. The condition \(\frac{m_{23}(\alpha m_{22}+m_{23})}{m_{13}\beta }m_{22}-\frac{\alpha m_{22}m_{23}+m_{13}^{2}+m_{23}^{2}}{\alpha m_{13}}\frac{\alpha m_{22}+m_{23}}{\beta } \ne 0\) needs to be satisfied.

D

One-lump-one-stripe solution parameters

$$\begin{aligned}&\left\{ \begin{aligned}&\lambda _{1}=1,~\lambda _{3}=2,~\lambda _{4}=1,~v_{0}=0,~ m_{12}=1,~m_{14}=2,~m_{21}=2,~m_{22}=1,~m_{24}=1,~m=2,\\&a_{11}=1,~a_{14}=1 \end{aligned} \right\} ; \end{aligned}$$
(D1)

One-lump-two-stripe solution parameters

$$\begin{aligned}&\left\{ \begin{aligned}&\lambda _{1}=1,~\lambda _{3}=2,~\lambda _{4}=1,~v_{0}=0,~ m_{12}=1,~m_{14}=2,~m_{21}=2,~m_{22}=1,~m_{24}=1,~m=2,\\&a_{11}=1,~a_{14}=1,~a_{21}=\frac{3}{2},~a_{24}=1 \end{aligned} \right\} ; \end{aligned}$$
(D2)

One-lump-three-stripe solution parameters

$$\begin{aligned}&\left\{ \begin{aligned}&\lambda _{1}=1,~\lambda _{3}=2,~\lambda _{4}=1,~v_{0}=0,~ m_{12}=1,~m_{14}=2,~m_{21}=2,~m_{22}=1,~m_{24}=1,~m=2,\\&a_{11}=1,~a_{14}=1,~a_{21}=2,~a_{24}=1,~ a_{31}=\frac{3}{2},~a_{34}=1 \end{aligned} \right\} ; \end{aligned}$$
(D3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, X., Chen, SJ. Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn 103, 947–977 (2021). https://doi.org/10.1007/s11071-020-06068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06068-6

Keywords

Mathematics Subject Classification

Navigation