Skip to main content
Log in

Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we focus on the global existence–uniqueness and input-to-state stability of the mild solution of impulsive reaction–diffusion neural networks with infinite distributed delays. First, the model of the impulsive reaction–diffusion neural networks with infinite distributed delays is reformulated in terms of an abstract impulsive functional differential equation in Hilbert space and the local existence–uniqueness of the mild solution on impulsive time interval is proven by the Picard sequence and semigroup theory. Then, the diffusion–dependent conditions for the global existence–uniqueness and input-to-state stability are established by the vector Lyapunov function and M-matrix where the infinite distributed delays are handled by a novel vector inequality. It shows that the ISS properties can be retained for the destabilizing impulses if there are no too short intervals between the impulses. Finally, three numerical examples verify the effectiveness of the theoretical results and that the reaction–diffusion benefits the input-to-state stability of the neural-network system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahn, C.K.: Passive learning and input-to-state stability of switched Hopfield neural networks with time-delay. Inform. Sci. 180(23), 4582–4594 (2010)

    Article  Google Scholar 

  2. Ali, M.S., Narayanan, G., Shekher, V., Alsaedi, A., Ahmad, B.: Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays. Commun. Nonlinear Sci. Numer. Simul. 83, 105088 (2020)

    Article  MathSciNet  Google Scholar 

  3. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  4. Cao, J., Stamov, G., Stamova, I., Simeonov, S.: Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2967625

    Article  Google Scholar 

  5. Chen, W.H., Luo, S., Zheng, W.X.: Impulsive synchronization of reaction-diffusion neural networks with mixed delays and its application to image encryption. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2696–2710 (2016)

    Article  Google Scholar 

  6. He, Y., Ji, M.D., Zhang, C.K., Wu, M.: Global exponential stability of neural networks with time-varying delay based on free-matrix-based integral inequality. Neural Netw. 77, 80–86 (2016)

    Article  Google Scholar 

  7. Hu, J., Sui, G., Lv, X., Li, X.: Fixed-time control of delayed neural networks with impulsive perturbations. Nonlinear Anal. Model. Control 23(6), 904–920 (2018)

    Article  MathSciNet  Google Scholar 

  8. Jiang, B., Lu, J., Li, X., Qiu, J.: Input/output-to-state stability of nonlinear impulsive delay systems based on a new impulsive inequality. Int. J. Robust Nonlinear Control 29, 6164–6178 (2019)

    Article  MathSciNet  Google Scholar 

  9. Li, X., Cao, J.: Delay-independent exponential stability of stochastic Cohen–Grossberg neural networks with time-varying delays and reaction-diffusion terms. Nonlinear Dyn. 50(1–2), 363–371 (2007)

    Article  MathSciNet  Google Scholar 

  10. Li, X., O’Regan, D., Akca, H.: Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays. IMA J. Appl. Math. 80(1), 85–99 (2015)

    Article  MathSciNet  Google Scholar 

  11. Li, X., Shen, J., Rakkiyappan, R.: Persistent impulsive effects on stability of functional differential equations with finite or infinite delay. Appl. Math. Comput. 329, 14–22 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Li, X., Yang, X., Huang, T.: Persistence of delayed cooperative models: impulsive control method. Appl. Math. Comput. 342, 130–146 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Liu, L., Cao, J., Qian, C.: \(p\)th moment exponential input-to-state stability of delayed recurrent neural networks with Markovian switching via vector Lyapunov function. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 3152–3163 (2018)

    MathSciNet  Google Scholar 

  14. Liu, Y., Xu, Y., Ma, J.: Synchronization and spatial patterns in a light-dependent neural network. Commun. Nonlinear Sci. Numer. Simul. 89, 105297 (2020)

    Article  MathSciNet  Google Scholar 

  15. Lu, J.G.: Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos Solitons Fractals 35(1), 116–125 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ma, Q., Shi, G., Xu, S., Zou, Y.: Stability analysis for delayed genetic regulatory networks with reaction-diffusion terms. Neural Comput. Appl. 20(4), 507–516 (2011)

    Article  Google Scholar 

  18. Ma, Q., Xu, S., Zou, Y., Shi, G.: Synchronization of stochastic chaotic neural networks with reaction-diffusion terms. Nonlinear Dyn. 67(3), 2183–2196 (2012)

    Article  MathSciNet  Google Scholar 

  19. Pan, J., Liu, X., Zhong, S.: Stability criteria for impulsive reaction-diffusion Cohen–Grossberg neural networks with time-varying delays. Math. Comput. Model. 51(9–10), 1037–1050 (2010)

    Article  MathSciNet  Google Scholar 

  20. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  21. Qi, X., Bao, H., Cao, J.: Exponential input-to-state stability of quaternion-valued neural networks with time delay. Appl. Math. Comput. 358, 382–393 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Sheng, Y., Zeng, Z.: Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays. Neural Netw. 103, 83–93 (2018)

    Article  Google Scholar 

  23. Sheng, Y., Zhang, H., Zeng, Z.: Stability and robust stability of stochastic reaction-diffusion neural networks with infinite discrete and distributed delays. IEEE Trans. Syst. Man Cybern. Syst. 50(5), 1721–1732 (2020)

    Article  Google Scholar 

  24. Shuai, B., Zuo, Z., Wang, B., Wang, G.: Scene segmentation with dag-recurrent neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1480–1493 (2018)

    Article  Google Scholar 

  25. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  26. Song, X., Man, J., Ahn, C.K., Song, S.: Finite-time dissipative synchronization for Markovian jump generalized inertial neural networks with reaction-diffusion terms. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2958419

    Article  Google Scholar 

  27. Song, X., Man, J., Song, S., Ahn, C.K.: Gain-scheduled finite-time synchronization for reaction-diffusion memristive neural networks subject to inconsistent Markov chains. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.3009081

    Article  Google Scholar 

  28. Song, X., Wang, M., Song, S., Ahn, C.K.: Sampled-data state estimation of reaction diffusion genetic regulatory networks via space-dividing approaches. IEEE/ACM Trans. Comput. Biol. Bioinform. (2019). https://doi.org/10.1109/TCBB.2019.2919532

    Article  Google Scholar 

  29. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    Article  MathSciNet  Google Scholar 

  30. Stamova, I.: Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn. 77(4), 1251–1260 (2014)

    Article  MathSciNet  Google Scholar 

  31. Wang, J.L., Zhang, X.X., Wu, H.N., Huang, T., Wang, Q.: Finite-time passivity and synchronization of coupled reaction-diffusion neural networks with multiple weights. IEEE Trans. Cybern. 49(9), 3385–3397 (2019)

    Article  Google Scholar 

  32. Wang, L., Zhang, R., Wang, Y.: Global exponential stability of reaction-diffusion cellular neural networks with S-type distributed time delays. Nonlinear Anal. Real World Appl. 10(2), 1101–1113 (2009)

    Article  MathSciNet  Google Scholar 

  33. Wang, X., Wang, H., Li, C., Huang, T.: Synchronization of coupled delayed switched neural networks with impulsive time window. Nonlinear Dyn. 84(3), 1747–1757 (2016)

    Article  MathSciNet  Google Scholar 

  34. Wei, T., Lin, P., Wang, Y., Wang, L.: Stability of stochastic impulsive reaction-diffusion neural networks with S-type distributed delays and its application to image encryption. Neural Netw. 116, 35–45 (2019)

    Article  Google Scholar 

  35. Wei, T., Lin, P., Zhu, Q., Wang, L., Wang, Y.: Dynamical behavior of nonautonomous stochastic reaction-diffusion neural-network models. IEEE Trans. Neural Netw. Learn. Syst. 30(5), 1575–1580 (2019)

    Article  MathSciNet  Google Scholar 

  36. Wu, K., Li, B., Du, Y., Du, S.: Synchronization for impulsive hybrid-coupled reaction-diffusion neural networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 82, 105031 (2020)

    Article  MathSciNet  Google Scholar 

  37. Wu, K.N., Ren, M.Z., Liu, X.Z.: Exponential input-to-state stability of stochastic delay reaction-diffusion neural networks. Neurocomputing 412, 399–405 (2020)

  38. Wu, X., Tang, Y., Zhang, W.: Input-to-state stability of impulsive stochastic delayed systems under linear assumptions. Automatica 66, 195–204 (2016)

    Article  MathSciNet  Google Scholar 

  39. Yang, X., Cao, J., Yang, Z.: Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J. Control Optim. 51(5), 3486–3510 (2013)

    Article  MathSciNet  Google Scholar 

  40. Yang, Z., Zhou, W., Huang, T.: Exponential input-to-state stability of recurrent neural networks with multiple time-varying delays. Cognit. Neurodyn. 8(1), 47–54 (2014)

    Article  Google Scholar 

  41. Yang, Z., Zhou, W., Huang, T.: Input-to-state stability of delayed reaction-diffusion neural networks with impulsive effects. Neurocomputing 333, 261–272 (2019)

    Article  Google Scholar 

  42. Zhang, X., Han, Y., Wu, L., Wang, Y.: State estimation for delayed genetic regulatory networks with reaction-diffusion terms. IEEE Trans. Neural Netw. Learn. Syst. 29(2), 299–309 (2018)

    Article  MathSciNet  Google Scholar 

  43. Zhu, H., Li, P., Li, X., Akca, H.: Input-to-state stability for impulsive switched systems with incommensurate impulsive switching signals. Commun. Nonlinear Sci. Numer. Simul. 80, 104969 (2020)

    Article  MathSciNet  Google Scholar 

  44. Zhu, Q., Cao, J., Rakkiyappan, R.: Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays. Nonlinear Dyn. 79(2), 1085–1098 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengda Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (61673247, 11771014), the Research Fund for Excellent Youth Scholars of Shandong Province (JQ201719), the China Postdoctoral Science Foundation (2020M672109), the Shandong Province Postdoctoral Innovation Project, and the Serbian Ministry of Education, Science and Technological Development (No. 451-03-68/2020-14/200108).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 31181 KB)

Supplementary material 2 (avi 10336 KB)

Supplementary material 3 (avi 34170 KB)

Supplementary material 4 (avi 31396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Li, X. & Stojanovic, V. Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays. Nonlinear Dyn 103, 1733–1755 (2021). https://doi.org/10.1007/s11071-021-06208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06208-6

Keywords

Navigation