Skip to main content
Log in

Quantifying the non-classical correlation of a two-atom system nonlinearly interacting with a coherent cavity: local quantum Fisher information and Bures distance entanglement

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The sensitivity of local quantum Fisher information and the Bures distance entanglement as quantifiers of the non-classical correlations, is examined for a atomic system interacting nonlinearly with a single cavity field. The general behavior shows that, the amount of the nonclassical correlation between the atomic subsystems that depicted by the local quantum Fisher information is larger than that detected by Bures distance entanglement. It is shown that, the long-lived non-classical correlations between the atomic subsystems is depicted in the presence of the intrinsic coherence and enhanced by switching on the dipole-dipole interaction. However, the upper bounds of these correlations decreases if the field is initially prepared in an even coherent state. Although the long-lived behavior of these correlations disappear at large values of the mean photon numbers, but the maximum and minimum bounds of these correlations are enhanced.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum Speed Limit for Physical Processes. Phys. Rev. Lett. 110, 050402 (2013)

    Article  Google Scholar 

  2. Karpat, G., Çakmak, B., Fanchini, F.F.: Propulsion of a domain wall in an antiferromagnet by magnons. Phys. Rev. B 90, 104431 (2014)

    Article  Google Scholar 

  3. Sun, Z., Ma, J., Lu, X.-M., Wang, X.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)

    Article  Google Scholar 

  4. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press (1976)

  5. Metwally, N.: . Fisher information of accelerated two-qubit systems. Int. J. M. Phys. B 32 (2018) 1850050; Metwally, N.: Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field. Physica E 100, 14 (2018)

  6. Metwally, N.: Estimation of teleported and gained parameters in a non-inertial frame. Laser Phys. Lett. 14, 0452102 (2017)

    Google Scholar 

  7. Genoni, M.G., Olivares, S., Paris, M.G.: Fisher-information-based estimation of optomechanical coupling strengths. Phys. Rev. Lett. 102, 013508 (2020)

    Google Scholar 

  8. Chapeau-Blondeau, F.: Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A Fisher information analysis. Phys. Lett. A 381, 1369 (2017)

    Article  MathSciNet  Google Scholar 

  9. Mathew, G., Silva, S.L.L., Jain, A., Mohan, A., Adroja, D.T., Sakai, V.G., Tomy, C.V., Banerjee, A., Goreti, R., N. A.V., Singh, R., Jaiswal-Nagar, D.: Experimental realization of multipartite entanglement via quantum Fisher information in a uniform antiferromagnetic quantum spin chain. Phys. Rev. Research 2, 043329 (2020)

  10. Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)

    Article  Google Scholar 

  11. Dhar, H.S., Bera, M.N., Adesso, G.: Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A 991, 032115 (2015)

    Article  Google Scholar 

  12. Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the heisenberg limit. Phys. Rev. Lett. bf 102, 100401 (2009)

    Article  MathSciNet  Google Scholar 

  13. Wang, G., Huang, L., Lai, Y.-C., Grebogi, C.: Nonlinear dynamics and quantum entanglement in optomechanical systems. Phys. Rev. Lett. 112, 110406 (2014)

    Article  Google Scholar 

  14. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379 (1994)

    Article  MathSciNet  Google Scholar 

  15. Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of quantum mechanics. Science 330, 1072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Statist. Phys. 172, 1617–1640 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Montina, A., Wolf, S.: Discrimination of non-local correlations. Entropy 21, 104 (2019)

    Article  MathSciNet  Google Scholar 

  18. Belleguie, L., Mukamel, S.: Nonlocal electrodynamics of weakly confined excitons in semiconductor nanostructures. J. Chem. Phys. 101, 9719 (1994)

    Article  Google Scholar 

  19. Rosati, R., Rossi, F.: Scattering nonlocality in quantum charge transport: application to semiconductor nanostructures. Phys. Rev. B 89, 205415 (2014)

    Article  Google Scholar 

  20. Ferry, D.K., Akis, R.: Nonlocal effects in semiconductor nanostructure transport. J. Phys. Condens. Matter. 20, 454201 (2008)

    Article  Google Scholar 

  21. Aharonov, Y., Cohen, E., Rohrlich, D.: Nonlocality of the Aharonov-Bohm effect. Phys. Rev. A 93, 042110 (2016)

    Article  Google Scholar 

  22. Pearle, P., Rizzi, A.: Quantum-mechanical inclusion of the source in the Aharonov-Bohm effects. Phys. Rev. A 95, 052123 (2017)

    Article  Google Scholar 

  23. Iotti, R.C., Dolcini, F., Rossi, F.: Wigner-function formalism applied to semiconductor quantum devices: need for nonlocal scattering models. Phys. Rev. B 96, 115420 (2017)

    Article  Google Scholar 

  24. El-Nabulsi, R.A.: Fourth-order Ginzburg-Landau differential equation a la Fisher-Kolmogorov and its implications in superconductivity. Physica C: Superconductivity and its applications 567, 1353545 (2019)

    Article  Google Scholar 

  25. El-Nabulsi, R.A.: Quantum LC-circuit satisfying the Schrodinger-Fisher-Kolmogorov equation and quantization of DC-dumper Josephson parametric amplifier. Phys. E: Low Dimens. Syst. Nanostruct. 112, 115–120 (2019)

    Article  Google Scholar 

  26. El-Nabulsi, R.A.: Nonlocal-in-time kinetic energy description of superconductivity. Phys. C: Superconduct. Appl. 577, 1353716 (2020)

    Article  Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mohamed, A.-B.A., Eleuch, H.: Quantum correlation control for two semiconductor microcavities connected by an optical fiber. Phys. Scr. 92, 065101 (2017)

    Article  Google Scholar 

  30. Mohamed, A.-B.A., Eleuch, H., Raymond Ooi, C.H.: Quantum coherence and entanglement partitions for two driven quantum dots inside a coherent micro cavity. Phys. Lett. A 383, 125905 (2019)

    Article  MathSciNet  Google Scholar 

  31. Mohamed, A.-B.A., Eleuch, H., Raymond Ooi, C.H.: Non-locality correlation in two driven qubits inside an open coherent cavity: trace norm distance and maximum bell function. Sci. Rep. 9, 19632 (2019)

    Article  Google Scholar 

  32. Abo-Kahla, D.A.M.: Information entropies of multi-qubit Rabi model beyond the rotating wave approximation. Nonlinear Dyn. 94, 1689 (2018)

    Article  MATH  Google Scholar 

  33. Kalaga, J.K., Kowalewska-Kudłaszyk, A., Jarosik, M.W., Szczȩśniak, R., Leoéski, W.: Enhancement of the entanglement generation via randomly perturbed series of external pulses in a nonlinear Bose-Hubbard dimer. Nonlinear Dyn. 97, 1619 (2019)

    Article  MATH  Google Scholar 

  34. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  Google Scholar 

  35. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  MATH  Google Scholar 

  36. Hu, M.-L., Hu, X., Wang, J., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Mohamed, A.-B.A., Metwally, N.: Enhancing non-local correlations in a dissipative two-qubit system via dipole dipole interplay. Quant. Inf. Process. 18, 79 (2019)

    Article  MATH  Google Scholar 

  38. Mohamed, A.-B.A.: Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence. Eur. Phys. J. D 71, 261 (2017)

    Article  Google Scholar 

  39. Mohamed, A.-B.A.: Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and Bell’s non-locality. Quantum Inf. Process. 17, 96 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jahromi, H. R., Amini, Ghanaatian, M. M.: Multiparameter estimation, lower bound on quantum Fisher information, and non-Markovianity witnesses of noisy two-qubit systems. Quantum Inf. Process. 18 (2019) 338

  41. Guo, Y.-N., Yang, C., Tian, Q.-L., Wang, G.-Y., Zeng, K.: Local quantum uncertainty and interferometric power for a two-qubit system under decoherence channels with memory. Quantum Inf. Process. 18, 375 (2019)

    Article  MathSciNet  Google Scholar 

  42. Slaoui, A., Bakmou, L., Daoud, M., Laamara, R.A.: A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg XY model. Phys. Lett. A 383, 2241–2247 (2019)

    Article  MathSciNet  Google Scholar 

  43. Ye, B.-L., Li, B., Liang, X.-B., Fei, S.-M.: Local quantum Fisher information and one-way quantum deficit in spin-1/2 XX Heisenberg chain with three-spin interaction. Int. J. Quantum Information (2020) 2050016

  44. Meng, Y., Yu, S., Jia, Z.-A., Wang, Y.-T., Ke, Z.-J., Liu, W., Li, Z.-P., Yang, Y.-Z., Wang, H., Wu, Y.-C., Tang, J.-S., Li, C.-F., Guo, G.-C.: Environment-induced sudden change of coherence in quantum systems. Phys. Rev. A 102, 042415 (2020)

    Article  Google Scholar 

  45. Maleki, Y., Ahansaz, B.: Maximal-steered-coherence protection by quantum reservoir engineering. Phys. Rev. A 102, 020402(R) (2020)

    Article  MathSciNet  Google Scholar 

  46. Mohamed, A.-B.A., Eleuch, H.: Quasi-probability information in an coupled two.qubit system interacting non.linearly with a coherent cavity under intrinsic decoherence, Sci. Rep. 10 13240 (2020)

  47. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)

    Article  MathSciNet  Google Scholar 

  48. Mirza, Imran M.: Strong coupling optical spectra in dipole-dipole interacting optomechanical Tavis-Cummings models. Opt. Lett. 41(11), 2422 (2016)

    Article  Google Scholar 

  49. Vanegas-Giraldo, J.J., Vinck-Posada, H., Echeverri-Arteaga, S., Gómez, E.A.: The strange attraction phenomenon induced by phonon-mediated off-resonant coupling in a biexciton-cavity system. Phys. Lett. A 384, 126481 (2020)

    Article  Google Scholar 

  50. Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A., Homid, A.H.: Efficient protocol of N-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator Quantum Inf. Process. 13, 475 (2014)

    MATH  Google Scholar 

  51. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. Streltsov, A., Kampermann, H., Bruss, D.: Linking a distance measure of entanglement to its convex roof. New J. Phys. 12, 123004 (2010)

    Article  MATH  Google Scholar 

  53. Wootters, W.K.: Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  MATH  Google Scholar 

  54. Armenta Rico, R.J., Maldonado-Villamizar, F.H., Rodriguez-Lara, B.M.: Spectral collapse in the two-photon quantum Rabi model. Phys. Rev. A 101, 063825 (2020)

    Article  MathSciNet  Google Scholar 

  55. Felicetti, S., Rossatto, D.Z., Rico, E., Solano, E., Forn- Díaz, P.: Two-photon quantum Rabi model with superconducting circuits. Phys. Rev. A 97, 013851 (2018)

    Article  Google Scholar 

  56. Puebla, R., Hwang, M.-J., Casanova, J., Plenio, M.B.: Protected ultrastrong coupling regime of the two-photon quantum Rabi model with trapped ions. Phys. Rev. A 95, 063844 (2017)

    Article  Google Scholar 

  57. Hessian, H.A., Mohamed, A.-B.A.: Quasi-probability distribution functions for a single trapped ion interacting with a mixed laser field. Laser Phys. 18, 1217 (2008)

    Article  Google Scholar 

  58. Li, Y., Zhou, J., Guo, H.: Effect of the dipole-dipole interaction for two atoms with different couplings in a non-Markovian environment. Phys. Rev. A 79, 012309 (2009)

    Article  Google Scholar 

  59. Namsrai, K. H.: Nonlocal Quantum Field Theory and Stochastic Quantum Mechanics; (1986) Springer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-B. A. Mohamed.

Ethics declarations

Disclosures

The authors declare no conflicts of interest

Funding

This research received no external funding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, AB.A., Metwally, N. Quantifying the non-classical correlation of a two-atom system nonlinearly interacting with a coherent cavity: local quantum Fisher information and Bures distance entanglement. Nonlinear Dyn 104, 2573–2582 (2021). https://doi.org/10.1007/s11071-021-06434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06434-y

Keywords

Navigation