Skip to main content
Log in

Stepped and swept control-based continuation using adaptive filtering

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces a new online method for performing control-based continuation (CBC), speeding up the model-less identification of stable and unstable periodic orbits of nonlinear mechanical systems. The main building block of the algorithm is adaptive filtering which can ensure the non-invasiveness of the controller without the need for offline corrective iterations. Two different strategies, termed stepped and swept CBC, are then developed for performing the continuation steps. A beam featuring different artificial stiffness and damping nonlinearities is considered for the experimental demonstration of the proposed developments. The performance of the CBC strategies are compared in terms of running time and identification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P. (ed.) Applications of Bifurcation Theory, pp. 359–384. Academic Press, New York (1977)

    Google Scholar 

  2. Seydel, R.: A continuation algorithm with step control. In: Numerical Methods for Bifurcation Problems, pp. 480–494. Springer, Berlin (1984)

  3. Doedel, E., Kernévez, J.: Auto: Software for Continuation Problems in Ordinary Differential Equations with Applications. Applied Mathematics. California Institute of Technology, California Institute of Technology, Pasadena (1986)

    Google Scholar 

  4. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. John Wiley & Sons, London (2008)

    MATH  Google Scholar 

  5. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992). https://doi.org/10.1016/0375-9601(92)90745-8

    Article  Google Scholar 

  6. Sieber, J., Gonzalez-Buelga, A., Neild, S.A., Wagg, D.J., Krauskopf, B.: Experimental continuation of periodic orbits through a fold. Phys. Rev. Lett. 100(24), 244101 (2008). https://doi.org/10.1103/PhysRevLett.100.244101

    Article  Google Scholar 

  7. Sieber, J., Krauskopf, B.: Control based bifurcation analysis for experiments. Nonlinear Dyn. 51, 356–377 (2008). https://doi.org/10.1007/s11071-007-9217-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Barton, D.A., Burrow, S.G.: Numerical continuation in a physical experiment: investigation of a nonlinear energy harvester. J. Comput. Nonlinear Dyn. 6(1), 011010 (2011). https://doi.org/10.1115/DETC2009-87318

    Article  Google Scholar 

  9. Bureau, E., Schilder, F., Santos, I., Thomsen, J.J., Starke, J.: Experimental bifurcation analysis for a driven nonlinear flexible pendulum using control-based continuation. In: 7th European Nonlinear Dynamics Conference (2011)

  10. Bureau, E., Schilder, F., Ferreira Santos, I., Juel Thomsen, J., Starke, J.: Experimental bifurcation analysis of an impact oscillator—Tuning a non-invasive control scheme. J. Sound Vib. 332(22), 5883–5897 (2013). https://doi.org/10.1016/j.jsv.2013.05.033

    Article  Google Scholar 

  11. Barton, D.A., Sieber, J.: Systematic experimental exploration of bifurcations with noninvasive control. Phys. Rev. E 87, 052916 (2013). https://doi.org/10.1103/PhysRevE.87.052916

    Article  Google Scholar 

  12. Renson, L., Gonzalez-Buelga, A., Barton, D.A., Neild, S.A.: Robust identification of backbone curves using control-based continuation. J. Sound Vib. 367, 145–158 (2016). https://doi.org/10.1016/j.jsv.2015.12.035

    Article  Google Scholar 

  13. Renson, L., Shaw, A.D., Barton, D.A., Neild, S.A.: Application of control-based continuation to a nonlinear structure with harmonically coupled modes. Mech. Syst. Signal Process. 120, 449–464 (2019). https://doi.org/10.1016/j.ymssp.2018.10.008

    Article  Google Scholar 

  14. Kleyman, G., Paehr, M., Tatzko, S.: Application of control-based-continuation for characterization of dynamic systems with stiffness and friction nonlinearities. Mech. Res. Commun. 106, 103520 (2020). https://doi.org/10.1016/j.mechrescom.2020.103520

    Article  Google Scholar 

  15. Gomes, B., de Cesare, I., Guarino, A., di Bernardo, M., Renson, L., Marucci, L.: Exploring the dynamics of nonlinear biochemical systems using control-based continuation. bioRxiv p. 695866 (2019)

  16. Barton, D.A.: Control-based continuation: bifurcation and stability analysis for physical experiments. Mech. Syst. Signal Process. 84(B), 54–64 (2017). https://doi.org/10.1016/j.ymssp.2015.12.039

    Article  Google Scholar 

  17. Renson, L., Barton, D.A., Neild, S.A.: Experimental tracking of limit-point bifurcations and backbone curves using control-based continuation. Int. J. Bifurc. Chaos 27(1), 1730002 (2017). https://doi.org/10.1142/S0218127417300026

    Article  MathSciNet  MATH  Google Scholar 

  18. Renson, L., Sieber, J., Barton, D.A., Shaw, A.D., Neild, S.A.: Numerical continuation in nonlinear experiments using local Gaussian process regression. Nonlinear Dyn. 98, 2811–2826 (2019). https://doi.org/10.1007/s11071-019-05118-y

    Article  MATH  Google Scholar 

  19. Sokolov, I.J., Babitsky, V.I.: Phase control of self-sustained vibration. J. Sound Vib. 248(4), 725–744 (2001). https://doi.org/10.1006/jsvi.2001.3810

    Article  Google Scholar 

  20. Mojrzisch, S., Twiefel, J.: Phase-controlled frequency response measurement of a piezoelectric ring at high vibration amplitude. Arch. Appl. Mech. 86(10), 1763–1769 (2016). https://doi.org/10.1007/s00419-015-1032-5

    Article  Google Scholar 

  21. Peter, S., Scheel, M., Krack, M., Leine, R.I.: Synthesis of nonlinear frequency responses with experimentally extracted nonlinear modes. Mech. Syst. Signal Process. 101, 498–515 (2018). https://doi.org/10.1016/j.ymssp.2017.09.014

    Article  Google Scholar 

  22. Scheel, M., Peter, S., Leine, R.I., Krack, M.: A phase resonance approach for modal testing of structures with nonlinear dissipation. J. Sound Vib. 435, 56–73 (2018). https://doi.org/10.1016/j.jsv.2018.07.010

    Article  Google Scholar 

  23. Scheel, M., Weigele, T., Krack, M.: Challenging an experimental nonlinear modal analysis method with a new strongly friction-damped structure. J. Sound Vib. 485 (2020). https://doi.org/10.1016/j.jsv.2020.115580

  24. Denis, V., Jossic, M., Giraud-Audine, C., Chomette, B., Renault, A., Thomas, O.: Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form. Mech. Syst. Signal Process. 106, 430–452 (2018). https://doi.org/10.1016/j.ymssp.2018.01.014

  25. Peter, S., Leine, R. I.: Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation. Mech. Syst. Signal Process. 96, 139–158. https://doi.org/10.1016/j.ymssp.2017.04.011

  26. Karaağaçlı, T., Özgüven, H.N.: Experimental identification of backbone curves of strongly nonlinear systems by using response-controlled stepped-Sine testing (RCT). Vibration 3(3), 266–280 (2020). https://doi.org/10.3390/vibration3030019

    Article  Google Scholar 

  27. Karaağaçlı, T., Özgüven, H.N.: Experimental modal analysis of nonlinear systems by using response-controlled stepped-sine testing. Mech. Syst. Signal Process. 146 (2021). https://doi.org/10.1016/j.ymssp.2020.107023

  28. Widrow, B., Williams, C.S., Glover, J.R., McCool, J.M., Hearn, R.H., Zeidler, J.R., Kaunitz, J., Dong, E., Goodlin, R.C.: Adaptive noise cancelling: principles and applications. Proc. IEEE 63(12), 1692–1716 (1975). https://doi.org/10.1109/PROC.1975.10036

    Article  Google Scholar 

  29. Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  30. Guillaume, P., Verboven, P., Vanlanduit, S., Auweraer, H.V.D., Peeters, B.: A poly-reference implementation of the least-squares complex frequency-domain estimator. Proc. IMAC 21, 183–192 (2003)

    Google Scholar 

  31. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, Part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009). https://doi.org/10.1016/j.ymssp.2008.04.002

    Article  Google Scholar 

  32. Li, Y., Dankowicz, H.: Adaptive control designs for control-based continuation in a class of uncertain discrete-time dynamical systems. JVC/J. Vib. Control 1–18 (2020). https://doi.org/10.1177/1077546320913377

  33. Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963)

    Article  Google Scholar 

  34. Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of nonlinear mechanical systems. Conf. Proc. Soc. Exp. Mech. Ser. 1, 65–82 (2016). https://doi.org/10.1007/978-3-319-15221-9_5

    Article  MATH  Google Scholar 

Download references

Acknowledgements

G.A. is grateful to the F.R.S.-FNRS for funding this research by the FRIA grant. L.R. acknowledges the financial support of the Royal Academy of Engineering, Research Fellowship #RF1516/15/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtan Abeloos.

Ethics declarations

Funding

This research was funded by the Fond de la Recherche Scientifique (F.R.S.-FNRS) under the Fonds pour la Formation á la Recherche dans l’Industrie et l’Agriculture (FRIA) grant.

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

The data collected and used in this research is available on the University of Liège Open Repository and Bibliography (ORBi) at the address https://orbi.uliege.be/handle/2268/259361.

Code availability

The Simulink files used for the experiments and the post-processing scripts are available on the University of Liège Open Repository and Bibliography (ORBi) at the address https://orbi.uliege.be/handle/2268/259361.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abeloos, G., Renson, L., Collette, C. et al. Stepped and swept control-based continuation using adaptive filtering. Nonlinear Dyn 104, 3793–3808 (2021). https://doi.org/10.1007/s11071-021-06506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06506-z

Keywords

Navigation