Skip to main content

Advertisement

Log in

Suppression of vibration transmission in coupled systems with an inerter-based nonlinear joint

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study proposes an inerter-based nonlinear passive joint device and investigates its performance in suppression of vibration transmission in coupled systems. The joint device comprises an axial inerter and a pair of lateral inerters creating geometric nonlinearity, with the nonlinear inertance force being a function of the relative displacement, velocity, and acceleration of the two terminals. Both analytical approximations based on the harmonic balance method and numerical integration are used to obtain the steady-state response amplitude. Force transmissibility and time-averaged energy flow variables are used as performance indices to evaluate the vibration transmission in the coupled system, with subsystems representing the dominant modes of interactive engineering structures. The effects of adding the proposed joint to the force-excited subsystem or to the coupling interface of subsystems on suppression performance are examined. It is found that the insertion of the inerter-based nonlinear joint can shift and bend response peaks to lower frequencies, substantially reducing the vibration of the subsystems at prescribed frequencies. By adding the joint device, the level of vibration force and energy transmission between the subsystems can be attenuated in the range of excitation frequencies of interest. It is shown that the inerter-based nonlinear joint can be used to introduce an anti-peak in the response curve and achieve substantially lower levels of force transmission and a reduced amount of energy transmission between subsystems. This work provides an in-depth understanding of the effects of inerter-based nonlinear devices on vibration attenuation and benefits enhanced designs of coupled systems for better dynamic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability statement

The results presented in this work can be replicated by implementing the equations presented in this paper. All relevant equations have been included to enable readers to replicate the results.

References

  1. Yang, J., Xiong, Y.P., Xing, J.T.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332(1), 167–183 (2013)

    Article  Google Scholar 

  2. Chedjou, J.C., Fotsin, H.B., Woafo, P., Domngang, S.: Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(6), 748–757 (2001)

    Article  Google Scholar 

  3. Schwingshackl, C.W., Di Maio, D., Sever, I., Green, J.S.: Modeling and validation of the nonlinear dynamic behavior of bolted flange joints. J. Eng. Gas Turbines Power 135(12), 122504 (2013)

    Article  Google Scholar 

  4. Jalali, H., Ahmadian, H., Mottershead, J.E.: Identification of nonlinear bolted lap-joint parameters by force-state mapping. Int. J. Solids Struct. 44(25–26), 8087–8105 (2007)

    Article  Google Scholar 

  5. Liu, X.C., Cui, F.Y., Jiang, Z.Q., Wang, X.Q., Xu, L., Shang, Z.X., Cui, X.X.: Tension–bend–shear capacity of bolted-flange connection for square steel tube column. Eng. Struct. 201, 109798 (2019)

    Article  Google Scholar 

  6. Yang, J.S.: Hybrid active and passive control of a very large floating beam structure. Nonlinear Dyn. 87(3), 1835–1845 (2017)

    Article  Google Scholar 

  7. Stanton, S.C., Culver, D., Mann, B.P.: Tuning inertial nonlinearity for passive nonlinear vibration control. Nonlinear Dyn. 99(1), 495–504 (2020)

    Article  Google Scholar 

  8. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)

    Article  MathSciNet  Google Scholar 

  9. Chen, M.Z., Papageorgiou, C., Scheibe, F., Wang, F.C., Smith, M.C.: The missing mechanical circuit element. IEEE Circuits Syst. Mag. 9(1), 10–26 (2009)

    Article  Google Scholar 

  10. Glover, A.R., Smith, M.C., Houghton, N.E., Long, P.J.G.: Force-controlling hydraulic device. International Patent Application No: PCT/GB2010/001491 (2009)

  11. Smith, M.C., Wang, F.C.: Performance benefits in passive vehicle suspensions employing inerters. Veh. Syst. Dyn. 42(4), 235–257 (2004)

    Article  Google Scholar 

  12. Li, Y., Jiang, J.Z., Neild, S.: Inerter-based configurations for main-landing-gear shimmy suppression. J. Aircr. 54(2), 684–693 (2017)

    Article  Google Scholar 

  13. Lazar, I.F., Neild, S.A., Wagg, D.J.: Using an inerter-based device for structural vibration suppression. Earthquake Eng. Struct. Dynam. 43(8), 1129–1147 (2014)

    Article  Google Scholar 

  14. Yang, J.: Force transmissibility and vibration power flow behaviour of inerter-based vibration isolators. In: Journal of Physics: Conference Series, vol. 744(1), pp. 012234 (2016)

  15. Yang, J., Jiang, J.Z., Zhu, X., Chen, H.: Performance of a dual-stage inerter-based vibration isolator. Procedia Eng. 199, 1822–1827 (2017)

    Article  Google Scholar 

  16. Dong, Z., Yang, J., Meng, H., Chronopoulos, D.: Suppression of vibration transmission between oscillators coupled with an inerter-based joint. In: Proceedings of the 11th International Conference on Structural Dynamics, Athens, Greece, 23–26 November 2020, pp. 1521–1528. European Association for Structural Dynamics Publishing (2020)

  17. Zhu, C., Yang, J., Rudd, C.: Vibration transmission and power flow of laminated composite plates with inerter-based suppression configurations. Int. J. Mech. Sci. 190, 106012 (2020)

    Article  Google Scholar 

  18. Dong, Z., Chronopoulos, D., Yang, J.: Enhancement of wave damping for metamaterial beam structures with embedded inerter-based configurations. App. Acoust. 178, 108013 (2021)

    Article  Google Scholar 

  19. Zhang, R., Zhao, Z., Pan, C., Ikago, K., Xue, S.: Damping enhancement principle of inerter system. Struct. Control Health Monit. 27(5), e2523 (2020)

    Article  Google Scholar 

  20. Yang, J., Xiong, Y.P., Xing, J.T.: Power flow behaviour and dynamic performance of a nonlinear vibration absorber coupled to a nonlinear oscillator. Nonlinear Dyn. 80(3), 1063–1079 (2015)

    Article  Google Scholar 

  21. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86(4), 2161–2177 (2016)

    Article  MathSciNet  Google Scholar 

  22. Yan, Z., Ragab, S.A., Hajj, M.R.: Passive control of transonic flutter with a nonlinear energy sink. Nonlinear Dyn. 91(1), 577–590 (2018)

    Article  Google Scholar 

  23. Papageorgiou, C., Houghton, N.E., Smith, M.C.: Experimental testing and analysis of inerter devices. J. Dyn. Syst. Meas. Control 131(1), 011001 (2009)

    Article  Google Scholar 

  24. Papageorgiou, C., & Smith, M. C.: Laboratory experimental testing of inerters. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 15 December 2005, pp. 3351–3356. IEEE Publishing (2005)

  25. Gonzalez-Buelga, A., Lazar, I.F., Jiang, J.Z., Neild, S.A., Inman, D.J.: Assessing the effect of nonlinearities on the performance of a tuned inerter damper. Struct. Control Health Monit. 24(3), e1879 (2017)

    Article  Google Scholar 

  26. Yang, J., Jiang, J.Z., Neild, S.A.: Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators. Nonlinear Dyn. 99(3), 1823–1839 (2020)

    Article  Google Scholar 

  27. Yang, J., Shi, B., Rudd, C.: On vibration transmission between interactive oscillators with nonlinear coupling interface. Int. J. Mech. Sci. 137, 238–251 (2018)

    Article  Google Scholar 

  28. Goyder, H.G.D., White, R.G.: Vibrational power flow from machines into built-up structures, part I: introduction and approximate analyses of beam and plate-like foundations. J. Sound Vib. 68(1), 59–75 (1980)

    Article  Google Scholar 

  29. Goyder, H.G.D., White, R.G.: Vibrational power flow from machines into built-up structures, Part II: Wave propagation and power flow in beam-stiffened plates. J. Sound Vib. 68(1), 77–96 (1980)

    Article  Google Scholar 

  30. Goyder, H.G.D., White, R.G.: Vibrational power flow from machines into built-up structures, Part III: power flow through isolation systems. J. Sound Vib. 68(1), 97–117 (1980)

    Article  Google Scholar 

  31. Langley, R.S.: Analysis of power flow in beams and frameworks using the direct-dynamic stiffness method. J. Sound Vib. 136(3), 439–452 (1990)

    Article  Google Scholar 

  32. Clarkson, B.L.: Estimation of the coupling loss factor of structural joints. Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci. 205(1), 17–22 (1991)

    Article  Google Scholar 

  33. Cuschieri, J.M.: Structural power-flow analysis using a mobility approach of an L-shaped plate. J. Acoust. Soc. Am. 87(3), 1159–1165 (1990)

    Article  Google Scholar 

  34. Mace, B.R., Shorter, P.J.: Energy flow models from finite element analysis. J. Sound Vib. 233(3), 369–389 (2000)

    Article  Google Scholar 

  35. Wang, Z.H., Xing, J.T., Price, W.G.: A study of power flow in a coupled plate–cylindrical shell system. J. Sound Vib. 271(3–5), 863–882 (2004)

    Article  Google Scholar 

  36. Xiong, Y.P., Xing, J.T., Price, W.G.: Power flow analysis of complex coupled systems by progressive approaches. J. Sound Vib. 239(2), 275–295 (2001)

    Article  Google Scholar 

  37. Xing, J.T., Price, W.G.: A power–flow analysis based on continuum dynamics. Proc. Royal Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455(1982), 401–436 (1999)

    Article  MathSciNet  Google Scholar 

  38. Ji, L., Mace, B.R., Pinnington, R.J.: A power mode approach to estimating vibrational power transmitted by multiple sources. J. Sound Vib. 265(2), 387–399 (2003)

    Article  Google Scholar 

  39. Xiong, Y.P., Xing, J.T., Price, W.G.: A power flow mode theory based on a system’s damping distribution and power flow design approaches. Proc. Royal Soc. A Math. Phys. Eng. Sci. 461(2063), 3381–3411 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Yang, J., Xiong, Y.P., Xing, J.T.: Nonlinear power flow analysis of the Duffing oscillator. Mech. Syst. Signal Process. 45(2), 563–578 (2014)

    Article  Google Scholar 

  41. Yang, J., Xiong, Y.P., Xing, J.T.: Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base. Int. J. Mech. Sci. 115, 238–252 (2016)

    Article  Google Scholar 

  42. Krack, M., Gross, J.: Harmonic balance for nonlinear vibration problems. Springer, New York (2019)

    Book  Google Scholar 

  43. Moussi, E.H., Bellizzi, S., Cochelin, B., Nistor, I.: Nonlinear normal modes of a two degrees-of-freedom piecewise linear system. Mech. Syst. Signal Process. 64, 266–281 (2015)

    Article  Google Scholar 

  44. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China [Grant numbers, 12172185, 51839005].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Ethics declarations

Conflict of interest

We have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Property of the power transmission ratio

Appendix: Property of the power transmission ratio

When the inerter-based joint is added at position Q, the power transmission ratio \({R}_{t}\) from subsystems S1 to S2 is not sensitive to changes in the inertance \(\lambda_{0}\) and \(\lambda_{1}\) as shown in Figs. 15b and 18b. Here, the reasons are demonstrated with mathematical derivations for the case when the inerter-based joint is added at position Q, and the lateral inerters are with \(\lambda_{1} = 0\). Note that Eq. (6) can be rearranged as:

$$ - {\Omega }^{2} \tilde{X}_{1} + 2\zeta_{1} {{{\text{i}}\Omega }}\tilde{X}_{1} + \tilde{X}_{1} + \kappa \tilde{\Delta } - {\Omega }^{2} \lambda_{0} \tilde{X}_{1} = F_{0} \exp \left( {{\text{i}}\phi } \right), $$
(39a)
$$ - {\Omega }^{2} \mu \left( {\tilde{X}_{1} - \tilde{\Delta }} \right) + 2\zeta_{2} {{{\text{i}}\Omega }}\mu \left( {\tilde{X}_{1} - \tilde{\Delta }} \right) + \gamma \left( {\tilde{X}_{1} - \tilde{\Delta }} \right) - \kappa \tilde{\Delta } = 0, $$
(39b)

where \(\tilde{X}_{1}\) and \(\tilde{\Delta }\) denotes the complex amplitude of the response of mass \(m_{1}\) and that of the relative displacement amplitude. According to Eq. (39a) and (39b), the expression of response amplitude can be derived as:

$$ \tilde{X}_{1} = \frac{{F_{0} \exp \left( {{\text{i}}\phi } \right)\left( { - {\Omega }^{2} \mu + 2\zeta_{2} {{{\text{i}}\Omega }}\mu + \gamma + \kappa } \right)}}{{\left( { - {\Omega }^{2} + 2\zeta_{1} {{{\text{i}}\Omega }} + 1 - {\Omega }^{2} \lambda_{0} } \right)\left( { - {\Omega }^{2} \mu + 2\zeta_{2} {{{\text{i}}\Omega }}\mu + \gamma + \kappa } \right) + \kappa \left( { - {\Omega }^{2} \mu + 2\zeta_{2} {{{\text{i}}\Omega }}\mu + \gamma } \right)}}, $$
(40a)
$$ \tilde{\Delta } = \frac{{F_{0} \exp \left( {{\text{i}}\phi } \right)\left( { - {\Omega }^{2} \mu + 2\zeta_{2} {{{\text{i}}\Omega }}\mu + \gamma } \right)}}{{\left( { - {\Omega }^{2} + 2\zeta_{1} {{{\text{i}}\Omega }} + 1 - {\Omega }^{2} \lambda_{0} } \right)\left( { - {\Omega }^{2} \mu + 2\zeta_{2} {{{\text{i}}\Omega }}\mu + \gamma + \kappa } \right) + \kappa \left( { - {\Omega }^{2} \mu + 2\zeta_{2} {{{\text{i}}\Omega }}\mu + \gamma } \right)}}, $$
(40b)
$$ \tilde{X}_{2} = \tilde{X}_{1} - \tilde{\Delta } = \frac{{F_{0} \exp \left( {{\text{i}}\phi } \right)\kappa }}{{\left( { - {\Omega }^{2} + 2\zeta_{1} {{{\text{i}}\Omega }} + 1 - {\Omega }^{2} \lambda_{0} } \right)\left( { - {\Omega }^{2} \mu + 2\zeta_{2} {{{\text{i}}\Omega }}\mu + \gamma + \kappa } \right) + \kappa \left( { - {\Omega }^{2} \mu + 2\zeta_{2} {{{\text{i}}\Omega }}\mu + \gamma } \right)}}. $$
(40c)

The transmitted force to subsystem S2 can be expressed by:

$$ \widetilde{{F_{t} }} = \kappa \tilde{\Delta }. $$
(41)

The time-averaged input power and transmitted power over a period of oscillation are:

$$ \overline{P}_{{{\text{in}}}} = \frac{1}{T}\mathop \smallint \limits_{{t_{0} }}^{{t_{0} + T}} {\text{Re}}\left\{ {p_{in} } \right\}{\text{d}}t = \frac{1}{2}{\text{Re}}\left\{ {\left( {F_{0} \exp \left( {{\text{i}}\phi } \right)} \right)^{*} X_{1} {{{\text{i}}\Omega }}} \right\}, $$
(42a)
$$ \overline{P}_{{\text{t}}} = \frac{1}{T}\mathop \smallint \limits_{{t_{0} }}^{{t_{0} + T}} {\text{Re}}\left\{ {p_{t} } \right\}{\text{d}}t = \frac{1}{2}{\text{Re}}\left\{ {\widetilde{{F_{t} }}^{*} X_{2} {{{\text{i}}\Omega }}} \right\}, $$
(42b)

where \({*}\) denotes the complex conjugate. The power transmission ratio from subsystem one to subsystem two is defined as:

$$ R_{t} = \frac{{\overline{P}_{{\text{t}}} }}{{\overline{P}_{{{\text{in}}}} }}. $$
(43)

Based on Eqs. (40)–(43), the power transmission ratio \(R_{t}\) can be calculated:

$$ R_{t} = \frac{{\overline{P}_{{\text{t}}} }}{{\overline{P}_{{{\text{in}}}} }} = \frac{{\kappa^{2} 2\zeta_{2} {\Omega }\mu }}{{\left( { - {\Omega }^{2} \mu + \gamma + \kappa } \right)\left( { - {\Omega }^{2} \mu + \gamma + \kappa } \right)2\zeta_{1} {\Omega } + 2\kappa \zeta_{2} {\Omega }\mu \kappa }}, $$
(44)

where \(\lambda_{0}\) is eliminated suggesting that the change in \({\lambda }_{0}\) will not affect the power transmission ratio from subsystem S1 to subsystem S2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Shi, B., Yang, J. et al. Suppression of vibration transmission in coupled systems with an inerter-based nonlinear joint. Nonlinear Dyn 107, 1637–1662 (2022). https://doi.org/10.1007/s11071-021-06847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06847-9

Keywords

Navigation