Skip to main content
Log in

The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

As one kind of Burgers-type equation, the extended coupled (2+1)-dimensional Burgers system is used to describe certain wave process in oceanography, acoustics or hydrodynamics. With the Riccati projective equation method and symbolic computation, the variable separation solution is derived. Due to the arbitrary functions in the variable separation solutions, the fractal and chaotic structures are studied based on the gradient function (say, U in the text). Some excitation properties of the solutions are analyzed and figures are plotted to show the shape and the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Hirota, R.: The direct method in soliton theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  2. Lü, X., Hui, H.W., Liu, F.F., Bai, Y.L.: Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dyn. 106, 1491–1507 (2021)

    Article  Google Scholar 

  3. Fan, E.G., Zhang, H.Q.: A note on the homogeneous balance method. Phys. Lett. A 246(5), 403–406 (1998)

    Article  Google Scholar 

  4. Lü, X., Chen, S.J.: New general interaction solutions to the KPI equation via optional decoupling condition approach. Commun. Nonlinear Sci. Numer. Simul. 103, 105939 (2021)

    Article  MathSciNet  Google Scholar 

  5. Zhang, Z.Y., Huang, J.H., Zhong, J., Dou, S.S., Liu, J., Peng, D., Gao, T.: The extended (g’/g)-expansion method and travelling wave solutions for the perturbed nonlinear Schrdinger’s equation with kerr law nonlinearity. Pramana 82(6), 1011–1029 (2014)

  6. Yin, M.Z., Zhu, Q.W., Lü, X.: Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model. Nonlinear Dyn. 106, 1347–1358 (2021)

    Article  Google Scholar 

  7. Chen, S.J., Lü, X., Li, M.G., Wang, F.: Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations. Physica Scripta 96, 095201 (2021)

    Article  Google Scholar 

  8. Xu, J.Z., Huang, J.N.: Bell-shape soliton pair in a hydrogen-bonded chain with asymmetric double-well potential. Phys. Lett. A 197(2), 127–134 (1995)

    Article  Google Scholar 

  9. Li, J.B., Zhang, Y.: Bifurcations and parametric representations of traveling wave solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle system. Math. Methods Appl. Sci. 34(2), 147–151 (2011)

    Article  MathSciNet  Google Scholar 

  10. Yin, Y.H., Chen, S.J., Lü, X.: Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations. Chin. Phys. B 29, 120502 (2020)

    Article  Google Scholar 

  11. Chen, S.J., Lü, X., Li, M.G., Wang, F.: Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations. Physica Scripta 96, 095201 (2021)

  12. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103, 947–977 (2020)

    Article  Google Scholar 

  13. Chen, S.J., Lü, X., Tang, X.F.: Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 95, 105628 (2021)

    Article  MathSciNet  Google Scholar 

  14. Gleick, J., Hilborn, R.C.: Chaos: making a new science. Phys. Today 41(11), 79 (1988)

    Article  Google Scholar 

  15. Lü, X., Hua, Y.F., Chen, S.J., Tang, X.F.: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws. Commun. Nonlinear Sci. Numer. Simul. 95, 105612 (2021)

    Article  Google Scholar 

  16. Mandelbrot, B.B.: The fractal geometry of nature. Am. J. Phys. 51(3), 468 (1998)

    Google Scholar 

  17. Falconer and Kenneth. Fractal geometry: mathematical foundations and applications, second edition. Biometrics, 46(3), (2020)

  18. Wiggins, S.: Global bifurcations and chaos analytical methods. Springer-Verlag, Berlin (1988)

    Book  Google Scholar 

  19. Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials. Nonlinear Dyn. 102, 379–391 (2020)

  20. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  21. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43(4), 163 (1915)

    Article  Google Scholar 

  22. Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under PT-symmetric potentials. Nonlinear Dyn. 92, 1351–1358 (2018)

  23. Osman, M.S., Baleanu, D., Adem, A.R., Hosseini, K., Eslami, M.: Double-wave solutions and lie symmetry analysis to the (2+1)-dimensional coupled Burgers equations. Chin. J. Phys. 63, 122–129 (2020)

    Article  MathSciNet  Google Scholar 

  24. Wazwaz, A.M.: Multiple-front solutions for the burgers equation and the coupled Burgers equations. Appl. Math. Comput. 190(2), 1198–1206 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733–1741 (2020)

  26. Wang, G.W., Fakhar, K., Kara, A.H.: Soliton solutions and group analysis of a new coupled (\(2+1\))-dimensional Burgers equations. Acta Physica Polonica 46(5), 923 (2015)

    Article  MathSciNet  Google Scholar 

  27. Wang, J.Y., Liang, Z.F., Tang, X.Y.: Infinitely many generalized symmetries and painlevé analysis of a (2+1)-dimensional Burgers system. Physica Scripta 89(2), 025201 (2014)

    Article  Google Scholar 

  28. Motsepa, T., Khalique, C.M.: Conservation laws and solutions of a generalized coupled (2+1)-dimensional Burgers system. Comput. Math. Appl. 74(6), 1333–1339 (2017)

    Article  MathSciNet  Google Scholar 

  29. Lü, J.H., Chen, G.R., Cheng, D.Z.: A new chaotic system and beyond: the generalized lorenz-like system. Int. J. Bifurc. Chaos 14(05), 1507–1537 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities of China (2018RC031), and the National Natural Science Foundation of China under Grant No. 71971015. Y.W. Zhao and J.W. Xia are supported by the Project of National Training Program of Innovation and Entrepreneurship for Undergraduates under Grant No. 201910004054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Lü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix I

Appendix I

In Eq. (1), we assume that

$$\begin{aligned} u=\psi ^{-\alpha }\sum \limits _{j=0}^{\infty }u_{j}\psi ^{j},~~v=\psi ^{-\beta }\sum \limits _{j=0}^{\infty }v_{j}\psi ^{j}, \end{aligned}$$
(42)

where \(\alpha ,~\beta \) are positive integers and

$$\begin{aligned} \psi =\psi (x,y,t),~~u_{j}=u_{j}(x,y,t),~~v_{j}=v_{j}(x,y,t), \end{aligned}$$
(43)

are analytic functions of (xyt) near a singularity manifold \(M=\{(x,y,t):\psi (x,y,t)=0\}\).

To balance the dominant terms, we assume the leading order singular behavior is in the form of

$$\begin{aligned} u\sim u_{0}\psi ^{-\alpha },~~v\sim v_{0}\psi ^{-\beta }, \end{aligned}$$
(44)

and obtain

$$\begin{aligned}&\alpha =1,~~\beta =1,\nonumber \\&u_{0}=\pm \frac{2\sqrt{BC}}{A}\psi _{x},~~v_{0}=\frac{2C}{A}\psi _{x}. \end{aligned}$$
(45)

We directly substitute

$$\begin{aligned}&u\sim \pm \frac{2\sqrt{BC}}{A}\psi _{x}\psi ^{-1}\nonumber \\&\qquad +\cdots +u_{j}\psi ^{j-1}+\cdots ,~~ v\sim \frac{2C}{A}\psi _{x}\psi ^{-1}\nonumber \\&\qquad +\cdots +v_{j}\psi ^{j-1}+\cdots , \end{aligned}$$
(46)

into Eq. (1), and make the determinant of the coefficients on \(u_{j},~v_{j}\) in the lowest order system of Eq. (1) with respect to \(\psi \) to zero, leading to

$$\begin{aligned} \left| \begin{matrix} 4\sqrt{BC}\psi _{x}^{2}-2\sqrt{BC}j\psi _{x}^{2} &{} ~~-2B\psi _{x}^{2}+3Bj\psi _{x}^{2}-Bj^{2}\psi _{x}^{2}\\ -9Cj\psi _{y}\psi _{x}^{2}+6Cj^{2}\psi _{y}\psi _{x}^{2}-Cj^{3}\psi _{y}\psi _{x}^{2} &{} ~~-6\sqrt{BC}\psi _{y}\psi _{x}^{2}+8\sqrt{BC}j\psi _{y}\psi _{x}^{2}-2\sqrt{BC}j^{2}\psi _{y}\psi _{x}^{2} \end{matrix}\right| =0 \end{aligned}$$
(47)

Solving Eq. (47) gives the resonance values as

$$\begin{aligned} j=-1, 1, 2, 3, 4. \end{aligned}$$
(48)

\(j=-1\) corresponds to the arbitrary singular manifold. From the coefficients of \((\psi ^{-3},\psi ^{-3})\), \((\psi ^{-2},\psi ^{-2})\), \((\psi ^{-1},\psi ^{-1})\) and \((\psi ^{0},\psi ^{0})\), we can show that either \(u_{1}\) or \(v_{1}\), \(u_{2}\) or \(v_{2}\), \(u_{3}\) or \(v_{3}\) and \(u_{4}\) or \(v_{4}\) is arbitrary. Thus, we can conclude that Eq. (1) possesses the Painlevé property.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YW., Xia, JW. & Lü, X. The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system. Nonlinear Dyn 108, 4195–4205 (2022). https://doi.org/10.1007/s11071-021-07100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07100-z

Keywords

Navigation