Skip to main content
Log in

Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nondegenerate vector one-soliton and two-soliton solutions of the 2-coupled mixed derivative nonlinear Schrödinger equation are acquired by the Hirota bilinear method. The amplitude, intensity and velocity of the vector one-soliton are determined by diverse wave numbers. The research of the collision dynamics for nondegenerate vector two-soliton indicates that energy conversion always occurs in such coupled system. This remarkable feature provides the possibility for the design and development of optical communication in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Song, Y.F., Shi, X.J., Wu, C.F., Tang, D.Y., Zhang, H.: Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6, 021313 (2019)

    Article  Google Scholar 

  2. Wen, X.K., Wu, G.Z., Liu, W., Dai, C.Q.: Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrödinger model by the MPS-PINN method. Nonlinear Dyn. 109, 3041–3050 (2022)

    Article  Google Scholar 

  3. Ma, G.L., Zhao, J.B., Zhou, Q., Biswas, A., Liu, W.J.: Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrodinger equation. Nonlinear Dyn. 106, 2479–2484 (2021)

    Article  Google Scholar 

  4. Huang, W.T., Liu, F.F., Lü, X., Wang, J.P., Xu, H.T.: Optical soliton and modulation instability in the high birefringence fiber. Nonlinear Dyn. 108, 2429–2445 (2022)

    Article  Google Scholar 

  5. Xu, T., He, G.L.: The coupled derivative nonlinear Schrödinger equation: conservation laws, modulation instability and semirational solutions. Nonlinear Dyn. 100, 2823–2837 (2020)

    Article  Google Scholar 

  6. Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022)

    Article  Google Scholar 

  7. Li, M., Tian, B., Liu, W.J., Jiang, Y., Sun, K.: Dark and anti-dark vector solitons of the coupled modified nonlinear Schrödinger equations from the birefringent optical fibers. Eur. Phys. J. D. 59, 279–289 (2010)

    Article  Google Scholar 

  8. Zhang, H., Tang, D.Y., Zhao, L.M., Xiang, N.: Coherent energy exchange between components of a vector soliton in fiber lasers. Opt. Express. 16, 12618 (2008)

    Article  Google Scholar 

  9. Islam, M.N., Mollenauer, L.F., Stolen, R.H., Simpson, J.R., Shang, H.T.: Cross-phase modulation in optical fibers. Opt. Lett. 12, 625–627 (1987)

    Article  Google Scholar 

  10. Tan, B., Boyd, J.P.: Coupled-mode envelope solitary waves in a pair of cubic Schrödinger equations with cross modulation: analytical solution and collisions with application to Rossby waves. Chaos Solitons Fractals. 11, 1113–1129 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, Y.J., Wu, J.W., Hu, L.T., Lin, J.: Nondegenerate solitons for coupled higher-order nonlinear Schrödinger equations in optical fibers. Phys Scr. 96, 095212 (2021)

    Article  Google Scholar 

  12. Yu, W.T., Liu, W.J., Zhang, H.X.: Soliton molecules in the kink, antikink and oscillatory background. Chaos Solitons Fractals. 159, 112132 (2022)

    Article  MathSciNet  Google Scholar 

  13. Yu, W.T., Luan, Z.T., Zhang, H.X., Liu, W.J.: Collisions of three higher order dark double- and single-hump solitons in optical fiber. Chaos Solitons Fractals. 157, 111816 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goodman, R.H., Haberman, R.: Vector-soliton collision dynamics in nonlinear optical fibers. Phys. Rev. E. 71, 056605 (2005)

    Article  MathSciNet  Google Scholar 

  15. Tan, Y., Yang, J.K.: Resonance- and phase-induced window sequences in vector-soliton collisions. Phys. Lett. A. 288, 309–315 (2001)

    Article  MATH  Google Scholar 

  16. Yang, J.K., Tan, Y.: Fractal dependence of vector-soliton collisions in birefringent fibers. Phys. Lett. A. 280, 129–138 (2001)

    Article  MATH  Google Scholar 

  17. Cao, X.D., Meyerhofer, D.D.: All-optical switching by means of collisions of spatial vector solitons. Opt. Lett. 19, 1711 (1994)

    Article  Google Scholar 

  18. Rand, D., Glesk, I., Brès, C.S., Nolan, D.A., Chen, X., Koh, J.: Observation of temporal vector soliton propagation and collision in birefringent fiber. Phys. Rev. Lett. 98, 053902 (2007)

    Article  Google Scholar 

  19. Stalin, S., Ramakrishnan, R., Lakshmanan, M.: Nondegenerate bright solitons in coupled nonlinear schrödinger systems: recent developments on optical vector solitons. Photonics. 8, 258 (2021)

    Article  Google Scholar 

  20. Cao, Q.H., Dai, C.Q.: Symmetric and anti-symmetric solitons of the fractional second-and third-order nonlinear schrodinger equation. Chin. Phys. Lett. 38, 090501 (2021)

    Article  Google Scholar 

  21. Radhakrishnan, R., Lakshmanan, M., Hietarinta, J.: Inelastic collision and switching of coupled bright solitons in optical fibers. Phys. Rev. E. 56, 2213–2216 (1997)

    Article  Google Scholar 

  22. Lü, X., Tian, B.: Vector bright soliton behaviors associated with negative coherent coupling. Phys. Rev. E. 85, 026117 (2012)

    Article  Google Scholar 

  23. Stalin, S., Ramakrishnan, R., Senthilvelan, M., Lakshmanan, M.: Nondegenerate solitons in manakov system. Phys. Rev. Lett. 122, 043901 (2019)

    Article  Google Scholar 

  24. Lovkesh, S.V., Singh, S.: The design of a reconfigurable all-optical logic device based on cross-phase modulation in a highly nonlinear fiber. J. Comput. Electron. 20, 397–408 (2021)

    Article  Google Scholar 

  25. Li, M., Xiao, J.H., Liu, W.J., Wang, P., Qin, B., Tian, B.: Mixed-type vector solitons of the N-coupled mixed derivative nonlinear Schrödinger equations from optical fibers. Phys. Rev. E. 87, 032914 (2013)

    Article  Google Scholar 

  26. Zhang, H.Q.: Energy-exchange collisions of vector solitons in the N-coupled mixed derivative nonlinear Schrödinger equations from the birefringent optical fibers. Opt. Commun. 290, 141–145 (2013)

    Article  Google Scholar 

  27. Ramakrishnan, R., Stalin, S., Lakshmanan, M.: Nondegenerate solitons and their collisions in Manakov systems. Phys. Rev. E. 102, 042212 (2020)

    Article  MathSciNet  Google Scholar 

  28. Matsuno, Y.: The bright N-soliton solution of a multi-component modified nonlinear Schrödinger equation. J. Phys. A Math. Theor. 44, 495202 (2011)

    Article  MATH  Google Scholar 

  29. Zhang, Y.J., Yang, C.Y., Yu, W.T., Mirzazadeh, M., Zhou, Q., Liu, W.J.: Interactions of vector anti-dark solitons for the coupled nonlinear Schrodinger equation in inhomogeneous fibers. Nonlinear Dyn. 94, 1351–1360 (2018)

    Article  Google Scholar 

  30. Jia, H.X., Zuo, D.W., Li, X.H., Xiang, X.S.: Breather, soliton and rogue wave of a two-component derivative nonlinear Schrödinger equation. Phys. Lett. A. 405, 127426 (2021)

    Article  MATH  Google Scholar 

  31. Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Matsuno, Y.: The multi-component modified nonlinear Schrödinger system with nonzero boundary conditions. Phys Scr. 94, 115216 (2019)

    Article  Google Scholar 

  33. Mitra, S., Poddar, S., Ghose-Choudhury, A., Garai, S.: Solitary wave characteristics in nonlinear dispersive media: a conformable fractional derivative approach. Nonlinear Dyn. 56, 82 (2022). https://doi.org/10.1007/s11071-022-07719-6

    Article  Google Scholar 

  34. Sukhinov, A.I., Chistyakov, A.E., Protsenko, E.A., Protsenko, S.V.: Coastal protection structures influence on diffraction and reflection of waves simulation based on 3D wave hydrodynamics model. J Phys Conf Ser. 1902, 012133 (2021)

    Article  Google Scholar 

  35. Zhang, H.Q., Tian, B., Lü, X., Li, H., Meng, X.H.: Soliton interaction in the coupled mixed derivative nonlinear Schrödinger equations. Phys. Lett. A. 373, 4315–4321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stalin, S., Ramakrishnan, R., Lakshmanan, M.: Nondegenerate soliton solutions in certain coupled nonlinear Schrdinger systems. Phys. Lett. A. 384, 126201 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yan, Z.W., Lou, S.Y.: Soliton molecules in Sharma–Tasso–Olver–Burgers equation. Appl Math Lett. 104, 106271 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stratmann, M., Pagel, T., Mitschke, F.: Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005)

    Article  Google Scholar 

Download references

Funding

Zhejiang Provincial Natural Science Foundation of China (Grant No. LR20A050001); National Natural Science Foundation of China (Grant Nos. 12075210 and 11874324); the Scientific Research and Developed Fund of Zhejiang A&F University (Grant No. 2021FR0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Qing Dai.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval

This Research does not involve Human Participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: two-soliton solution

Appendix: two-soliton solution

The constraints in parentheses after each parameter only restrict the parameter before it.

$$\begin{aligned} \nu _{{mn}} L_{{mn}} & = \sum\limits_{{m,n,o = 1}}^{2} {} \frac{1}{{[(\kappa _{{n0}} + J_{1} )(\kappa _{m} + \kappa _{{n0}} ) + (\iota _{2} + \iota _{{o0}} )J_{9} ]}}\mu _{{mn}} \Psi _{{1o}} [\kappa _{{n0}} J_{{2 + }} + \iota _{2} J_{{2 - }} (\kappa _{1} - \iota _{1} )J_{9} ] \\ & + \Upsilon _{{mn}} \Psi _{{2o}} [\kappa _{{n0}} J_{{3 + }} + \iota _{2} (J_{{3 - }} - \iota _{2} ) + \iota _{1} \iota _{{10}} + (\iota _{{o0}} - \iota _{1} )\kappa _{1} ] \\ & + \Upsilon _{{3o}} \delta _{{mn}} (\kappa _{{n0}} J_{{4 + }} + \iota _{2} J_{{5 + }} - J_{{6 + }} - \iota _{1}^{2} ) + \alpha _{{12}} A_{{2o}} B_{{mn}} (\kappa _{{n0}} J_{{4 - }} + \iota _{2} J_{{5 - }} + J_{{6 - }} - \iota _{2}^{2} ) \\ & + \alpha _{{22}} A_{{1o}} B_{{mn}} [ - \kappa _{{n0}} J_{7} + \iota _{2} J_{8} - J_{9} (\iota _{1} + \kappa _{1} ) - \kappa _{m}^{2} ],{\text{with }}J_{1} = \iota _{2} + \iota _{{o0}} + \iota _{1} ,J_{{2 \pm }} = \mp \kappa _{{n0}} - \kappa _{m} \\ & + \iota _{1} + \iota _{{o0}} ,J_{{3 \pm }} = - \kappa _{{n0}} - \kappa _{m} - \iota _{1} \pm \iota _{{o0}} ,J_{{4 \pm }} = - \kappa _{m} + \iota _{1} \pm \iota _{{o0}} ,J_{{5 \pm }} = \kappa _{{n0}} \pm \iota _{{o0}} \mp \kappa _{1} \\ & + \iota _{1} ,J_{{6 \pm }} = \iota _{1} \iota _{{o0}} - \iota _{{o0}} \kappa _{1} - \iota _{1} \kappa _{1} \pm \kappa _{m}^{2} ,J_{7} = \kappa _{m} + \iota _{1} + \iota _{{o0}} ,J_{8} = - \kappa _{{n0}} + \iota _{{o0}} - \kappa _{1} + \iota _{1} ,J_{9} = \iota _{{o0}} + \iota _{1} . \\ \end{aligned}$$
$$\begin{aligned} A_{{op}} B_{{mn}} & = \sum\limits_{{m,n,o,p = 1}}^{2} {} - \frac{1}{{2P_{{1 + }}^{2} }}\{ ( - 2E_{{1 - }}^{2} \Psi _{{mn}} + \alpha _{{m2}} \alpha _{{n20}} [i\gamma (E_{{2 + }} - \iota _{m} ) - \mu ] \\ & + 2\Psi _{{nm0}} \delta _{{mn}} E_{{2 + }}^{2} + 2\delta _{{nm0}} \Psi _{{mn}} E_{3}^{2} - [i\gamma (\kappa _{o} - E_{3} ) + \mu ] \\ & (\alpha _{{o1}} \alpha _{{p10}} \Psi _{{mn}} + \Lambda _{{mn}} \Delta _{{mn}} \alpha _{{p10}} ) - \Delta _{{nm0}} \Lambda _{{nm0}} \alpha _{{o1}} (i\gamma \kappa _{o} + \mu ) \\ & + \Upsilon _{{po0}} \mu _{{op0}} \alpha _{{m2}} (i\gamma \iota _{m} + \mu ) + \Upsilon _{{po}} \mu _{{po}} \alpha _{{n20}} [i\gamma (E_{{2 - }} - \iota _{m} ) + \mu ]\} , \\ & {\text{with }}E_{{1 \pm }} = \pm \kappa _{o} \pm \kappa _{{p0}} + \iota _{m} + \iota _{{n0}} ,E_{{2 \pm }} = \kappa _{o} \pm \kappa _{{p0}} , \\ & E_{3} = \iota _{m} + \iota _{{n0}} ;m = 1,\mu _{{22}} = \Lambda _{{mn}} = \Lambda _{{nm0}} = 1;m = 2, \\ & \Upsilon _{{po}} = \Delta _{{mn}} = \Delta _{{nm0}} = 1;n = 1,\mu _{{op0}} = 1;n = 2,\Upsilon _{{po0}} = 1. \\ \end{aligned}$$
$$\begin{aligned} \delta_{17} & = \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ o \ne m,p \ne n \end{subarray} }^{2} {} - \frac{1}{{2F_{1}^{2} }}\{ - 2\delta_{o1} [F_{2} + ( - 1)^{p - 1} F_{3} ] + i\gamma ( - 1)^{p + 1} \alpha_{p1} \alpha_{o10} [F_{2} + ( - 1)^{o} \kappa_{m0} ] - 2F_{1} \delta_{po0} + \mu \alpha_{p1} \alpha_{o10} \} \delta_{mn} \\ & + i\gamma F_{1} \Delta_{3p} \alpha_{n10} + i\Delta_{3p0} \alpha_{n1} \kappa_{n} + \mu (\Delta_{3p} \alpha_{n10} + \Delta_{3p0} \alpha_{n1} ),{\text{with }}F_{1} = \kappa_{10} + \kappa_{20} + \kappa_{1} + \kappa_{2} ,F_{2} = \kappa_{1} - \kappa_{2} ,F_{3} = \kappa_{10} - \kappa_{20} . \\ \end{aligned}$$
$$\begin{aligned} \delta_{19} & = \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ o \ne m,p \ne n \end{subarray} }^{2} {} - \frac{1}{{2F_{4}^{2} }}\{ - 2\Psi_{op} [F_{5} + ( - 1)^{p - 1} F_{6} ] + i\gamma ( - 1)^{p + 1} \alpha_{o2} \alpha_{p20} [F_{5} + ( - 1)^{o} \iota_{n0} ] + 2F_{4} \delta_{po0} - \mu \alpha_{o2} \alpha_{p20} \} \Psi_{mn} \\ & - i\gamma F_{4} \Upsilon_{3p} \alpha_{n20} - i\Upsilon_{3p0} \alpha_{n2} \iota_{n} - \mu (\Upsilon_{3p} \alpha_{n10} + \Upsilon_{3p0} \alpha_{n1} ),{\text{with }}F_{4} = \iota_{10} + \iota_{20} + \iota_{1} + \iota_{2} ,F_{5} = \iota_{1} - \iota_{2} ,F_{6} = \iota_{10} - \iota_{20} . \\ \end{aligned}$$
$$\begin{aligned} \Theta _{{mn}} \Phi _{{mn}} & = \sum\limits_{{m,n,o = 1}}^{2} {} \frac{1}{{[(\iota _{{n0}} + K_{1} )(\iota _{{n0}} + \iota _{m} ) + (\kappa _{2} + \kappa _{{o0}} )(\kappa _{1} + \kappa _{{o0}} )]}}\Delta _{{mn}} \delta _{{o2}} [L_{1} K_{{2 + }} + L_{2} L_{4} ] \\ & + \Lambda _{{mn}} \delta _{{o1}} [L_{1} K_{{2 - }} - L_{2} L_{3} ] + \Delta _{{3o}} \Psi _{{mn}} [L_{1} K_{{3 + }} - \kappa _{{o0}} (L_{3} + \kappa _{2} ) - \kappa _{2} \kappa _{1} ] \\ & - \alpha _{{11}} A_{{o2}} B_{{mn}} [L_{1} K_{{3 - }} - L_{2} L_{4} ] - \alpha _{{21}} A_{{o1}} B_{{mn}} [L_{1} K_{4} + L_{2} L_{3} ],{\text{with }}K_{1} = \kappa _{1} \\ & + \kappa _{2} + \kappa _{{o0}} ,K_{{2 \pm }} = - \iota _{{n0}} + \kappa _{{o0}} \mp \kappa _{1} \pm \kappa _{2} ,K_{{3 \pm }} = \mp \iota _{m} + \kappa _{{o0}} \pm \kappa _{1} \\ & + \kappa _{2} ,K_{4} = \iota _{m} + \kappa _{{o0}} + \kappa _{1} - \kappa _{2} ,L_{1} = \iota _{{n0}} + \iota _{m} ,L_{2} = \kappa _{1} - \kappa _{2} ,L_{3} = \kappa _{{o0}} + \kappa _{1} ,L_{4} = \kappa _{{o0}} + \kappa _{2} . \\ \end{aligned}$$
$$\begin{aligned} \Delta _{{4m}} & = \sum\limits_{{m = 1}}^{2} {} \frac{1}{{[\iota _{{10}}^{2} + \iota _{{20}}^{2} + M_{{1 + }} \iota _{{10}} + (\iota _{2} + \iota _{1} + \kappa _{m} )\iota _{{20}} + (\kappa _{m} + \iota _{2} )\iota _{1} + \iota _{2} \kappa _{m} ]}}\Delta _{{11}} \Lambda _{{11}} \Psi _{{22}} [\iota _{{10}} M_{{2 + }} \\ & + \iota _{2} M_{{4 + }} + \kappa _{m} \left\langle { - \iota _{{10}} + \iota _{{20}} - \iota _{1} } \right\rangle + \iota _{1} \iota _{{20}} ] + \Delta _{{12}} \Lambda _{{12}} \Psi _{{21}} (\iota _{{10}} M_{{1 - }} \\ & + \iota _{2} M_{{4 - }} + \iota _{{20}} M_{{7 + }} - \iota _{1} \kappa _{m} ) + \Delta _{{21}} \Lambda _{{21}} \Psi _{{12}} [\iota _{{10}} M_{{2 - }} \\ & + \iota _{1} M_{{5 + }} + \kappa _{m} \left\langle { - \iota _{{10}} + \iota _{{20}} } \right\rangle + \iota _{2} \iota _{{20}} + \kappa _{1} \iota _{2} ] + \Delta _{{22}} \Lambda _{{22}} \Psi _{{11}} [\iota _{{10}} M_{{3 + }} \\ & + \iota _{1} M_{{5 - }} + \iota _{{20}} ( - \iota _{2} - \iota _{{20}} - \kappa _{m} ) + \kappa _{1} \iota _{2} ] + \alpha _{{m1}} \delta _{{19}} (\iota _{{10}} M_{{3 - }} \\ & + \iota _{2} M_{6} + \iota _{1} M_{{7 - }} + \kappa _{m} \iota _{{20}} ),{\text{with }}M_{{1 \pm }} = \pm \iota _{2} + \iota _{1} \\ & + \iota _{{20}} + \kappa _{m} ,M_{{2 \pm }} = \pm \iota _{2} + \iota _{{20}} - \iota _{{10}} \mp \iota _{1} ,M_{{3 \pm }} = \pm \iota _{2} \pm \iota _{{20}} \\ & + \kappa _{m} - \iota _{1} ,M_{{4 \pm }} = \mp \iota _{{20}} + \iota _{1} - \iota _{2} - \kappa _{1} ,M_{{5 \pm }} = - \iota _{1} \\ & + \iota _{2} \mp \iota _{{20}} + \kappa _{m} ,M_{6} = - \iota _{{20}} - \iota _{1} - \iota _{2} - \kappa _{1} ,M_{{7 \pm }} = - \iota _{{20}} \mp \kappa _{m} - \iota _{1} \\ \end{aligned}$$
$$\begin{aligned} \Upsilon_{4m} & = \sum\limits_{m = 1}^{2} {} \frac{1}{{[\kappa_{10} (\iota_{m} + N_{1 + } ) + (\kappa_{2} + \iota_{m} + \kappa_{1} + \kappa_{20} )\kappa_{20} + (\kappa_{2} + \iota_{m} )\kappa_{1} + \iota_{m} \kappa_{2} ]}}\Upsilon_{11} \mu_{11} \delta_{4} [(\kappa_{10} + \iota_{m} )N_{1 - } + \kappa_{2} N_{3 + } + \kappa_{1} \kappa_{10} ] + \Upsilon_{12} \mu_{12} \delta_{2} \\ [\kappa_{20} N_{2 + } & - N_{1 - } \iota_{m} + \kappa_{2} N_{3 - } + \kappa_{1} \kappa_{20} ] + \Upsilon_{21} \mu_{21} \delta_{3} [ - N_{2 + } (\kappa_{10} + \iota_{m} ) + \kappa_{1} N_{4} + \kappa_{2} \kappa_{20} ] + \Upsilon_{22} \mu_{22} \delta_{1} [ - N_{1 - } (\kappa_{20} + \iota_{m} ) + \kappa_{1} N_{5} + \kappa_{2} \kappa_{10} ] + \alpha_{m2} \delta_{17} [\kappa_{1} \\ N_{2 - } & + \iota_{m} N_{1 + } + \kappa_{2} N_{6} - \kappa_{10} \kappa_{20} ],{\text{with }}N_{1 \pm } = \kappa_{2} + \kappa_{20} \pm \kappa_{10} \pm \kappa_{1} ,N_{2 \pm } = \pm \kappa_{10} + \kappa_{2} - \kappa_{20} - \kappa_{1} ,N_{3 \pm } = - \kappa_{2} + \kappa_{1} - \kappa_{10} /\kappa_{20} ,N_{4} = \kappa_{2} - \kappa_{1} - \kappa_{20} ,N_{5} = \kappa_{20} \\ & - \kappa_{1} - \kappa_{10} ,N_{6} = - \kappa_{2} - \kappa_{20} - \kappa_{10} ;m = 1,\mu_{mn} = 1,\Lambda_{11} = 1;m = 2,\Upsilon_{mn} = 1,\Delta_{21} = 1. \\ \end{aligned}$$
$$\begin{gathered} \Upsilon_{51} = \frac{1}{{\kappa_{10}^{2} + (U_{1} + \kappa_{20} + \kappa_{1} )\kappa_{10} + \kappa_{20}^{2} + (U_{1} + \kappa_{1} )\kappa_{20} + U_{1} \kappa_{1} + (U_{1} - \kappa_{2} )\kappa_{2} + (\iota_{10} + \iota_{2} )(\iota_{10} + \iota_{1} )}}((\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {U_{2 + } } )(\kappa_{20} \kappa_{10} + \kappa_{2} \kappa_{1} ) + (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} U_{2 - } )\iota_{1} \iota_{10} \hfill \\ + (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} U_{3 + } )\iota_{2} \iota_{10} - (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} U_{3 - } )\iota_{1} \iota_{2} + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {[( - 1)^{m + n} U_{4} } - U_{5 + } ]U_{6} (\kappa_{10} - \kappa_{20} ) + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} [( - 1)^{m + n} (U_{4} + U_{5 - } )]\iota_{1} \kappa_{20} + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {( - 1)^{m} } U_{4} \hfill \\ + U_{5 - } ][ - \iota_{1} (\kappa_{10} + \kappa_{2} ) + \iota_{1} - \iota_{2} \kappa_{1} + \iota_{10} (U_{6} + \kappa_{10} - \kappa_{20} )] + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {( - 1)^{m} (} U_{4} - \phi_{m1} \alpha_{o2} - \Upsilon_{4m} \Psi_{o1} ) + \Upsilon_{31} \delta_{17} ]\iota_{2} \kappa_{2} + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {[( - 1)^{m - 1} } (U_{4} - U_{5 + } )]\iota_{2} \kappa_{10} + \hfill \\ [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} ( - 1)^{m - 1} (U_{4} + U_{5 + } )]\iota_{2} \kappa_{20} - (\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {U_{22} } )(\kappa_{20}^{2} + \kappa_{1}^{2} ) - (\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {} U_{11} )\kappa_{2}^{2} - \sum\limits_{\begin{subarray}{l} m,n, = 1, \\ m \ne n \end{subarray} }^{2} {} (\nu_{m1} A_{11} B_{2n} + \Upsilon_{4m} \Psi_{n2} + \Upsilon_{m1} A_{2n} B_{21} + \mu_{m1} A_{2n} B_{11} )\kappa_{10}^{2} + \hfill \\ (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} \nu_{mn} \delta_{po} + \Upsilon_{31} \delta_{17} )\iota_{10}^{2} - (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {\Upsilon_{mn} A_{po} B_{21} } + \phi_{21} \alpha_{12} )\iota_{2}^{2} - (\Upsilon_{41} \Psi_{11} + \phi_{11} \alpha_{22} + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {\mu_{mn} A_{po} B_{11} } )\iota_{1}^{2} - [(\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {\Upsilon_{4m} \Psi_{n1} + \Upsilon_{2m} A_{n1} B_{21} } ) \hfill \\ + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} \nu_{mn} \delta_{po} ]\kappa_{20}^{2} ,{\text{with }}U_{1} = \iota_{2} + \iota_{10} + \kappa_{2} + \iota_{1} ,U_{2 \pm } = \Upsilon_{mn} A_{po} B_{21} \pm \mu_{mn} A_{po} B_{11} \pm \nu_{mn} \delta_{po} - \phi_{m1} \alpha_{o2} \mp \Upsilon_{4m} \Psi_{o1} - \Upsilon_{31} \delta_{17} ,U_{3 \pm } = \Upsilon_{mn} A_{po} B_{21} \mp \mu_{mn} A_{po} B_{11} \hfill \\ \mp \nu_{mn} \delta_{po} + \phi_{m1} \alpha_{o2} \pm \Upsilon_{4m} \Psi_{o1} + \Upsilon_{31} \delta_{17} ,U_{4} = \Upsilon_{mn} A_{po} B_{21} + \mu_{mn} A_{po} B_{11} + \nu_{mn} \delta_{po} ,U_{5 \pm } = \pm \phi_{m1} \alpha_{o2} + \Upsilon_{4m} \Psi_{o1} + \Upsilon_{31} \delta_{17} ,U_{nn} = \Upsilon_{nm} A_{np} B_{21} + \mu_{nm} A_{np} B_{11} + \nu_{nm} A_{11} B_{np} \hfill \\ + \phi_{m1} \alpha_{n2} + \Upsilon_{31} \delta_{17} ,U_{6} = \kappa_{2} - \kappa_{1} . \hfill \\ \end{gathered}$$
$$\begin{gathered} \Upsilon_{52} = \frac{1}{{(\kappa_{10}^{2} + (V_{3} + \kappa_{20} + \kappa_{1} )\kappa_{10} + \kappa_{20}^{2} + (V_{3} + \kappa_{1} )\kappa_{20} + V_{3} \kappa_{1} + (V_{3} - \kappa_{2} )\kappa_{2} + (\iota_{20} + \iota_{2} )(\iota_{20} + \iota_{1} )}}( - \sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {} \Upsilon_{n1} A_{nm} B_{22} + \mu_{n1} A_{nm} B_{12} + L_{n1} \delta_{2m} + \Upsilon_{4m} \Psi_{n2} )\kappa_{n0}^{2} + \hfill \\ (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {V_{1} } - V_{2 + } )\kappa_{20} \kappa_{10} + \kappa_{2} \kappa_{1} + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {(( - 1)^{n} V_{1} } - V_{2 + } )\kappa_{1} \kappa_{10} + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {(( - 1)^{n} V_{1} } + V_{2 - } )[\iota_{20} (\kappa_{10} - \kappa_{20} ) + \iota_{1} (\kappa_{2} + \kappa_{20} ) + \iota_{20} (\kappa_{1} - \kappa_{2} )] + \hfill \\ \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {(( - 1)^{m + n} V_{1} } - V_{2 + } )\kappa_{2} \kappa_{10} + \kappa_{1} \kappa_{20} - \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} (( - 1)^{m + n} V_{1} + V_{2 + } )\kappa_{2} \kappa_{20} + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {(( - 1)^{n - 1} V_{1} } + V_{2 + } )[\kappa_{10} (\iota_{1} - \iota_{2} ) + \iota_{2} (\kappa_{1} + \kappa_{2} ) - \iota_{1} \kappa_{1} ] \hfill \\ + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {( - V_{1} } + V_{2 - } )(\iota_{1} - \iota_{2} )\iota_{20} - \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {( - V_{1} } + V_{2 - } )\iota_{1} \iota_{2} - (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} L_{mn} \delta_{po} + \Upsilon_{32} \delta_{17} )\iota_{20}^{2} - (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} \Upsilon_{mn} A_{po} B_{22} + \Upsilon_{14} \Psi_{22} + \phi_{22} \alpha_{12} )\iota_{2}^{2} \hfill \\ - (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} \mu_{mn} A_{po} B_{12} + \Upsilon_{41} \Psi_{12} + \phi_{12} \alpha_{22} )\iota_{1}^{2} - (\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {\mu_{1m} A_{n2} B_{12} + \phi_{m2} \alpha_{1n} + \Upsilon_{1m} A_{n2} B_{22} } + L_{1m} \delta_{n2} + \Upsilon_{32} \delta_{17} )(\kappa_{2}^{2} - \kappa_{10}^{2} ),{\text{with }}V_{1} = \Upsilon_{mn} A_{po} B_{22} + \hfill \\ \mu_{mn} A_{po} B_{12} + L_{mn} \delta_{po} ,V_{2 \pm } = \Upsilon_{4m} \Psi_{o2} \pm \phi_{m2} \alpha_{o2} + \Upsilon_{32} \delta_{17} ,V_{3} = \iota_{2} + \iota_{20} + \kappa_{2} + \iota_{1} . \hfill \\ \end{gathered}$$
$$\begin{aligned} & \Delta _{{51}} = \frac{1}{{\iota _{{10}} ^{2} + (\iota _{{20}} + \iota _{1} + W_{4} )\iota _{{10}} + \iota _{{20}} ^{2} + (W_{4} + \iota _{1} )\iota _{{20}} + W_{4} \iota _{1} + (W_{4} - \iota _{2} )\iota _{2} + (\kappa _{{10}} + \kappa _{2} )(\kappa _{{10}} + \kappa _{1} )}} - (\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {} \delta _{{m2}} \Lambda _{{n1}} + \vartheta _{{m2}} \Delta _{{n1}} + \Theta _{{m1}} \Psi _{{n2}} + \Delta _{{4m}} \delta _{{1n}} )\iota _{{10}} ^{2} + [(\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} \\ & W_{{1 + }} + W_{{2 + }} - T_{1} ](\iota _{{20}} \iota _{{20}} + \iota _{2} \iota _{1} ) + [(\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} W_{{1 - }} + W_{{2 - }} ) - T_{2} ]\kappa _{1} \kappa _{{10}} - [(\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} W_{{1 + }} + W_{{2 - }} ) - T_{2} ]\kappa _{2} \kappa _{{10}} - [(\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} - W_{{1 - }} + W_{{2 - }} ) - T_{2} ]\kappa _{1} \kappa _{2} + \\ & [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {( - 1)^{{m + n}} } (W_{{1 + }} + \delta _{{op}} \Lambda _{{mn}} ) - \Delta _{{4m}} \delta _{{1o}} - T_{1} ](2\iota _{1} + 2\iota _{2} )\iota _{{20}} + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {( - 1)^{{m + 1}} } (W_{{1 + }} + \delta _{{op}} \Lambda _{{mn}} ) + \Delta _{{4m}} \delta _{{1o}} + T_{2} ][(2\kappa _{{10}} + \kappa _{1} + \kappa _{2} )\iota _{{20}} + (\kappa _{1} + \iota _{{10}} ) \\ & \iota _{{20}} - \kappa _{{10}} \iota _{2} ] + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {( - 1)^{{m + 1}} } (W_{{1 + }} - W_{{2 - }} ) + T_{2} ][(\kappa _{{10}} + \kappa _{1} + \kappa _{2} )\iota _{1} + (\kappa _{2} - \kappa _{1} )\iota _{2} ] + [(\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n,n \ne 2 \end{subarray} }^{2} {} W_{3} + \Delta _{{4m}} \delta _{{1n}} )]\iota _{{20}} ^{2} - [(\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n,m \ne 2 \end{subarray} }^{2} {} W_{3} ) + T_{1} ](\iota _{1} ^{2} + \iota _{2} ^{2} ) - \\ & [\delta _{{19}} \Delta _{{31}} + (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} \Theta _{{op}} \Psi _{{mn}} )]\kappa _{{10}} ^{2} - [(\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} \delta _{{op}} \Lambda _{{mn}} ) + \Delta _{{41}} \delta _{1} + \delta _{{31}} \alpha _{{21}} ]\kappa _{1} ^{2} + [(\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} A_{{12}} B_{{op}} \Delta _{{mn}} ) + \delta _{{41}} \alpha _{{11}} + \Delta _{{41}} \delta _{2} ]\kappa _{2} ^{2} ,with{\text{ }}T_{1} = \delta _{{19}} \Delta _{{31}} \\ & + \delta _{{41}} \alpha _{{11}} + \delta _{{31}} \alpha _{{21}} ;T_{2} = \delta _{{19}} \Delta _{{31}} - \delta _{{41}} \alpha _{{11}} - \delta _{{31}} \alpha _{{21}} ,W_{{1 \pm }} = A_{{12}} B_{{mn}} \Delta _{{op}} \pm \Theta _{{op}} \Psi _{{mn}} ,W_{{2 \pm }} = \pm \delta _{{mn}} \Lambda _{{op}} - \Delta _{{4m}} \delta _{{1o}} ,W_{3} = \delta _{{m2}} \Lambda _{{n1}} + A_{{12}} B_{{m2}} \Delta _{{n1}} + \Theta _{{m1}} \Psi _{{n2}} , \\ & W_{4} = \iota _{2} + \kappa _{{10}} + \kappa _{2} + \kappa _{1} . \\ \end{aligned}$$
$$\begin{gathered} \Delta_{52} = \frac{1}{{\iota_{10}^{2} + (X_{2} + \iota_{20} + \iota_{1} )\iota_{10} + \iota_{20}^{2} + (X_{2} + \iota_{1} )\iota_{20} + X_{2} \iota_{1} + (X_{2} - \iota_{2} )\iota_{2} + (\kappa_{20} + \kappa_{2} )(\kappa_{20} + \kappa_{1} )}}[( - 1)^{m + n} \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} X_{1 + } - \Delta_{4m} \delta_{2n} - T_{1} ](\iota_{2} \iota_{10} + \iota_{1} \iota_{20} ) + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {( - 1)^{n - 1} X_{1 + } } \hfill \\ + \Delta_{4m} \delta_{2n} + T_{2} ][(\kappa_{20} + \kappa_{1} + \kappa_{2} )(\iota_{10} - \iota_{20} )] - [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} ( - 1)^{m + n} X_{1 + } + \Delta_{4m} \delta_{2n} + T_{1} ]\iota_{2} \iota_{20} + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} X_{1 + } - \Delta_{4m} \delta_{2n} - T_{1} ]\iota_{2} \iota_{1} + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} ( - 1)^{m + 1} X_{1 + } + \hfill \\ \Delta_{4m} \delta_{2n} + T_{2} ][(\kappa_{20} + \kappa_{1} - \kappa_{2} )\iota_{1} - (\kappa_{20} + \kappa_{1} + \kappa_{2} )\iota_{2} ] + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {X_{1 - } } + \Delta_{4m} \delta_{2n} + T_{2} ](\kappa_{1} + \kappa_{2} )\kappa_{20} + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} X_{1 - } - \Delta_{4m} \delta_{2n} + T_{2} ]\kappa_{2} \kappa_{1} ) + [ - \delta_{19} \Delta_{31} - \hfill \\ (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} \Phi_{op} \Psi_{mn} )]\kappa_{20}^{2} - (\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n,n \ne 2 \end{subarray} }^{2} {} X_{3} )\iota_{20}^{2} - [(\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n,m \ne 2 \end{subarray} }^{2} {} X_{3} ) + T_{1} ]\iota_{1}^{2} - (\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n,m \ne 1 \end{subarray} }^{2} {} X_{3} + T_{1} )\iota_{2}^{2} + [ - \Delta_{41} \delta_{2m} - (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} A_{2m} B_{op} \Lambda_{mn} ) - A_{11} B_{2m} \alpha_{n1} ]\kappa_{m}^{2} , \hfill \\ {\text{with }}T_{1} = \delta_{19} \Delta_{32} + A_{11} B_{22} \alpha_{11} + A_{11} B_{21} \alpha_{21} ,T_{2} = \delta_{19} \Delta_{32} - A_{11} B_{22} \alpha_{11} - A_{11} B_{21} \alpha_{21} ,X_{1 \pm } = A_{22} B_{mn} \Delta_{op} \pm \Phi_{op} \Psi_{mn} \pm A_{21} B_{mn} \Lambda_{op} ,X_{2} = \iota_{2} + \kappa_{20} + \kappa_{2} + \kappa_{1} , \hfill \\ X_{3} = A_{21} B_{m2} \Lambda_{n1} + A_{22} B_{m2} \Delta_{n1} + \Phi_{m1} \Psi_{n2} + \Delta_{4m} \delta_{1n} . \hfill \\ \end{gathered}$$
$$\begin{gathered} \phi_{mn} = \frac{1}{{2(\iota_{n0} + Q_{1} + \iota_{m} )^{2} }}(\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {iQ_{8} } )\Psi_{mn} (\kappa_{m} - \iota_{n} - i\iota_{n0} ) + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {} i(Q_{2} + Q_{20} + Q_{5} )\delta_{mn} ][\iota_{m} + ( - 1)^{m} Q_{1} ] + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {} iQ_{3} (Q_{1} + \iota_{m} ) - \sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {} iQ_{4} (\iota_{m} + Q_{1} ) \hfill \\ + \sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {} i\Delta_{3m} \alpha_{n10} \kappa_{m0} + \sum\limits_{\begin{subarray}{l} m,n,o = 1, \\ o \ne m \end{subarray} }^{2} {iQ_{5} \delta_{mn} } \iota_{10} + (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {} \delta_{mn} \delta_{po0} )\Psi_{mn} ( - 2Q_{12} - 4\iota_{n0} ) + (\sum\limits_{\begin{subarray}{l} m = 2,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {} iQ_{3} + Q_{6} + Q_{60} )[2\sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {} ( - 1)^{m} Q_{8} ](2Q_{1} - Q_{13} - (\iota_{20} \hfill \\ + \iota_{m} )^{2} + 2\iota_{20} \kappa_{1} + \iota_{n0} \kappa_{10} - \iota_{10} \kappa_{2} + 2\kappa_{20} (\kappa_{10} - \iota_{n0} )) + \mu [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {} i(Q_{2} + Q_{20} + Q_{5} )\delta_{mn} + \sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {} iQ_{4} + Q_{7} + Q_{70} + \alpha_{m2} \alpha_{n20} \delta_{17} - 2T_{2} \Psi_{nm0} (\kappa_{1}^{2} + 2\kappa_{m0} ) + \hfill \\ 2\Psi_{mn} (2\iota_{20} T_{1} - T_{m} \kappa_{2}^{2} - T_{1} \kappa_{1}^{2} ) - 2\Psi_{mn} (\delta_{17} + \delta_{170} )(2\iota_{n0} + 2\kappa_{m0} + Q_{12} )] + \Psi_{mn} ( - 4(T_{1} + T_{2} ) + 4T_{1} Q_{1} - 2( - 1)^{m} T_{1} \kappa_{m0}^{2} ) + 4\Psi_{nm0} T_{2} (\kappa_{2} + ( - 1)^{m} \kappa_{m0} ) + (i\Delta_{310} \Delta_{mn} \hfill \\ + i\Delta_{130} \Lambda_{mn} )(\iota_{m} + \kappa_{1} ) + \mu (\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {} Q_{8} )\Psi_{mn} - 2\Psi_{nm0} T_{2} (\kappa_{10} - \kappa_{20} )^{2} + [iQ_{7} + Q_{9 + } ](\iota_{m} + \kappa_{1} ) + (Q_{11} + iQ_{6} )\kappa_{2} + (i\Upsilon_{41} \alpha_{n20} + i\Delta_{13} \Lambda_{nm0} + Q_{9 - } )\kappa_{10} + (i\Delta_{31} \Delta_{nm0} - \hfill \\ Q_{4} + Q_{11} )\kappa_{20} + (i\Phi_{mn} \alpha_{110} + iQ_{60} )\iota_{10} ,{\text{with }}T_{1} = \delta_{11} \delta_{220} + \delta_{21} \delta_{210} + \delta_{17} ;T_{2} = \delta_{22} \delta_{11} + \delta_{21} \delta_{12} + \delta_{17} ;m = 1,\mu_{mn} = 1;m = 2,\Upsilon_{mn} = 1;n = 1,\mu_{mn0} = \Delta_{mn} = 1; \hfill \\ n = 2,\Upsilon_{mn0} = \Lambda_{mn} = 1;n = 2,\Upsilon_{140} = \Upsilon_{410} = 0;Q_{1} = \kappa_{20} + \kappa_{2} + \kappa_{1} + \kappa_{10} ,Q_{2} = \Upsilon_{po} \mu_{po} \alpha_{o20} ,Q_{3} = \Upsilon_{mn} \Upsilon_{po0} \mu_{mn} \mu_{po0} ,Q_{4} = \alpha_{p1} \alpha_{o10} A_{mn} B_{mn} ,Q_{5} = \alpha_{o10} \Lambda_{mn} \hfill \\ \Delta_{mn} ,Q_{6} = \Theta_{mn} \alpha_{210} + \Delta_{31} \Lambda_{nm0} + \Delta_{32} \Delta_{nm0} ,Q_{7} = \Phi_{mn} \alpha_{110} + \Upsilon_{4m} \alpha_{n20} ,Q_{8} = \Delta_{3n0} \alpha_{m1} + i\Delta_{3n} \alpha_{m10} ,Q_{8} = (\delta_{mn} + \delta_{op0} )A_{op} B_{mn} ),Q_{9 \pm } = \pm i\alpha_{m2} \alpha_{n20} \delta_{17} + i\Theta_{mn} \alpha_{210} , \hfill \\ Q_{11} = i\Phi_{mn} \alpha_{110} - i\alpha_{m2} \alpha_{n20} \delta_{17} + i\Upsilon_{4m} \alpha_{n20} ,Q_{12} = \iota_{m}^{2} + \iota_{n0}^{2} ,Q_{13} = \kappa_{m}^{2} + \kappa_{m0}^{2} . \hfill \\ \end{gathered}$$
$$\begin{gathered} C_{mn} = - \frac{1}{{2(S_{8} + \kappa_{m} + \kappa_{n0} )^{2} }}[\sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {} iS_{2} \delta_{mn} ]S_{3} - (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {\Delta_{po0} \Lambda_{po0} \Delta_{mn} \Lambda_{mn} } )(S_{3} - \iota_{20} - \mu ) + (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {} i\alpha_{p2} \alpha_{po0} A_{op} B_{mn} )(\kappa_{1} + \iota_{1} + ( - 1)^{m} \iota_{2} - \iota_{20} - \mu ) + \hfill \\ (\sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} {} T_{1} + 2\delta_{190} )[\delta_{mn} (\kappa_{n}^{2} + \kappa_{m0}^{2} + 4\kappa_{m0} + 4\iota_{m0} )] + \delta_{mn} T_{1} (\iota_{m0} - 8\kappa_{m0} ) - [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {(S_{1} + S_{10} )\Psi_{mn} } ][\kappa_{1} + ( - 1)^{m + 1} (\iota_{1} - \iota_{2} ) + \iota_{10} + ( - 1)^{n - 1} \iota_{20} - \mu ] + [\sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} 2 (\Psi_{po} + \hfill \\ \Psi_{op0} )A_{mn} B_{mn} ]\{ \kappa_{m}^{2} + \iota_{m}^{2} - \iota_{1} \delta_{mn} + \iota_{10} + (\iota_{20} + 2\kappa_{10} )\kappa_{1} + \kappa_{m0} [ - 2\iota_{1} + 4\iota_{2} + 4( - 1)^{m} (\iota_{20} - \iota_{10} )]\} + 2\sum\limits_{\begin{subarray}{l} m,n,o,p = 1 \\ m \ne o,n \ne p \end{subarray} }^{2} ( \Psi_{op} \delta_{nm0} + A_{op} B_{mn} + A_{po0} B_{mn0} )\Psi_{mn} (\iota_{20} - \iota_{2} + 2\iota_{m0}^{2} ) - \mu \sum\limits_{\begin{subarray}{l} m,n = 1, \\ m \ne n \end{subarray} }^{2} {S_{2} } \hfill \\ \delta_{mn} - \mu (\sum\limits_{m,n = 1}^{2} {} S_{5} + (S_{4} + S_{40} ))( - i\Delta_{4n} \alpha_{m10} - iS_{11} + iS_{5} + i\alpha_{120} \alpha_{o2} A_{m2} B_{mn} )\iota_{20} + (2T_{1} \iota_{1}^{2} + 4\delta_{19} \iota_{2} )(\delta_{mn} + \delta_{nm0} ) + \delta_{19} \delta_{nm0} (8\iota_{10} + 14\iota_{20} + \iota_{2}^{2} ) + 4(\Psi_{21} \Psi_{210} + \delta_{19} )\iota_{10} + 2\Psi_{o10} \hfill \\ A_{m2} B_{mn} + T_{1} \iota_{m0}^{2} + 2\delta_{19} \iota_{10} (2\iota_{20} + \delta_{10} \iota_{10} ) - 4\kappa_{m0} T_{1} \iota_{m0} + (S_{6 + } - i\Upsilon_{nm} \Upsilon_{310} - iL_{nm} \alpha_{120} )(\kappa_{1} + \iota_{1} + \iota_{2} ) - (i\Delta_{4m0} \alpha_{11} + i\Upsilon_{130} \mu_{nm} )\kappa_{1} - S_{7} (\iota_{1} + \iota_{2} ) + iL_{mn0} \alpha_{12} \iota_{1} + S_{9} \iota_{2} + (S_{6 - } + i\alpha_{220} \mu_{nm} \hfill \\ + i\alpha_{22} \mu_{mn0} - i\Upsilon_{13} \mu_{mn0} + i\Delta_{220} \Lambda_{220} \alpha_{11} + i\alpha_{o2} \alpha_{220} A_{m1} B_{mn} )\iota_{10} - i\gamma \kappa_{m0} (S_{9} + S_{11} + \mu_{nm} \Upsilon_{nm} \alpha_{o20} \Psi_{nm} ),{\text{with }}m = 1,\Lambda_{mn0} = 1;m = 2,\Delta_{mn0} = 1;n = 1,\Lambda_{mn} = 1;n = 2,\Delta_{mn} = 1;p = 2,\Upsilon_{mn0} \hfill \\ = 1;p = 1,\mu_{nm0} = 1;o = 2,\Upsilon_{nm} = 1;o = 1,\mu_{nm} = 1;T_{1} = \Psi_{11} \Psi_{220} + \Psi_{21} \Psi_{210} + \delta_{19} ,S_{1} = \Delta_{op} \Lambda_{op} \alpha_{m10} + \alpha_{o2} \Upsilon_{mn0} \mu_{nm0} ,S_{2} = \Upsilon_{3m} \alpha_{n20} + \Upsilon_{3m0} \alpha_{n2} ,S_{3} = \kappa_{1} + \iota_{m} + \iota_{10} ,S_{4} = \Upsilon_{mn0} \Upsilon_{31} + \Upsilon_{13} \mu_{mn0} \hfill \\ + L_{nm} \alpha_{120} + \alpha_{220} \nu_{nm} + \Delta_{4n} \alpha_{m10} ,S_{5} = \alpha_{n1} \alpha_{m10} \delta_{19} ,S_{6 \pm } = - i\Delta_{4m} \alpha_{m10} \mp i\alpha_{n1} \alpha_{m10} \delta_{19} - i\alpha_{220} \nu_{nm} ,S_{7} = i\Upsilon_{mn0} \Upsilon_{31} + i\Upsilon_{13} \mu_{mn0} ,S_{8} = \iota_{1} + \iota_{2} + \iota_{10} + \iota_{20} ,S_{9} = i\Upsilon_{13} \mu_{mn0} + i\alpha_{22} \nu_{mn0} ,S_{11} \hfill \\ = L_{nm} \alpha_{120} + i\Upsilon_{mn0} \Upsilon_{31} . \hfill \\ \end{gathered}$$
$$\begin{gathered} \delta_{18} = \frac{1}{{(\iota_{20} + \kappa_{20} + \iota_{2} + \kappa_{2} + \kappa_{1} + \kappa_{10} + \iota_{1} + \iota_{10} )^{2} }}i(\sum\limits_{m,n = 1}^{2} {} - Y_{2} )\delta_{m1} (\iota_{1} + \iota_{2} + \iota_{10} ) + i(\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} Y_{2} + \mu_{1n} \Upsilon_{130} + \Delta_{4n} \alpha_{11} )\kappa_{m0} \delta_{m1} + i\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} Y_{3} A_{o1} B_{mn} \hfill \\ (\iota_{m} + \iota_{n0} ) + i(\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} \Delta_{op} \Delta_{130} + \Theta_{mn0} \alpha_{11} + \mu_{1m} \Upsilon_{1m} \mu_{o10} \Upsilon_{o10} )\Psi_{mn} (\iota_{m} + \iota_{n0} + \kappa_{1} ) + i(\sum\limits_{\begin{subarray}{l} m,n, = 1, \\ m \ne n \end{subarray} }^{2} {} ( - \Delta_{14} \alpha_{n10} - \Delta_{1m} \Delta_{220} \Lambda_{220} - \Upsilon_{13} \mu_{n10} - \nu_{1n} L_{1n} \alpha_{o20} - \Delta_{2m} \Delta_{o10} \hfill \\ \Lambda_{o10} )\delta_{m1} \iota_{m0} - i\sum\limits_{\begin{subarray}{l} m,n, = 1, \\ m \ne n \end{subarray} }^{2} {} Y_{1} \kappa_{n0} \delta_{m1} + i\sum\limits_{\begin{subarray}{l} m,n, = 1, \\ m \ne n \end{subarray} }^{2} {} Y_{10} \kappa_{1} \delta_{m1} + i\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} (\Delta_{po0} \alpha_{11} + \Delta_{op} \alpha_{m10} + \alpha_{o2} \mu_{m10} \Upsilon_{m10} + \alpha_{o20} \mu_{1m} \Upsilon_{1m} )A_{o1} B_{mn} \kappa_{o0} + i\sum\limits_{\begin{subarray}{l} m,n, = 1, \\ m \ne n \end{subarray} }^{2} {} ( - \Delta_{mn} \Theta_{mn0} \hfill \\ - L_{11} \Upsilon_{210} - L_{n10} \Upsilon_{1n} )\iota_{m} + ( - \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} i\Upsilon_{1m} \mu_{11} \alpha_{p20} A_{o1} B_{mn} - \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} i\Psi_{mn} \mu_{1m} \Upsilon_{1m} \mu_{o10} \Upsilon_{o10} - iY_{5} + i\alpha_{22} \alpha_{210} \delta_{13} )\kappa_{m0} + [ - \sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} i\Delta_{p2} \alpha_{o10} A_{m1} B_{n1} + i \hfill \\ (Y_{4 - } - \Delta_{mn} \Theta_{op0} - \Delta_{o2} \Delta_{130} \Psi_{mn} - \Upsilon_{o10} \mu_{m10} \nu_{1o} L_{1m} )]\iota_{m0} + i(\sum\limits_{\begin{subarray}{l} m,n,o,p = 1, \\ m \ne o,n \ne p \end{subarray} }^{2} {} \Upsilon_{m10} \mu_{m10} \alpha_{p2} A_{o1} B_{mn} + Y_{5} + \Delta_{210} \alpha_{11} + \Delta_{2o} \Theta_{m10} + \Delta_{1m} \Theta_{o20} + Y_{4 + } )\kappa_{1} + i(Y_{4 - } - L_{12} \Upsilon_{110} - \hfill \\ \mu_{m10} \nu_{1o} )(\iota_{1} + \iota_{2} ),{\text{with }}m = 1,\Delta_{n20} = \Upsilon_{mn} = \Delta_{2n0} = 1,m = 2,\Lambda_{n20} = \mu_{mn} = \Lambda_{2n0} = 1;n = 1,\Upsilon_{mn0} = 1,n = 2,\mu_{mn0} = 1;Y_{1} = L_{1n} \alpha_{120} + \Upsilon_{310} \Upsilon_{1n} + \mu_{1n} \Upsilon_{130} + \alpha_{220} \nu_{1n} ,Y_{2} = \Delta_{14} \alpha_{n10} \hfill \\ + \Upsilon_{31} \Upsilon_{n10} + \mu_{n10} \Upsilon_{13} + \Upsilon_{310} \Upsilon_{1n} + L_{n10} \alpha_{12} + L_{1n} \alpha_{120} + \Delta_{mn} \Lambda_{po0} \Delta_{po0} + \alpha_{220} \nu_{1n} + \alpha_{22} \nu_{n10} ,Y_{3} = \Delta_{op} \alpha_{m10} + \Delta_{po0} \alpha_{11} + \mu_{m10} \Upsilon_{m10} \alpha_{o2} + \mu_{1m} \Upsilon_{1m} \alpha_{p20} ,Y_{4 \pm } = \Delta_{130} \delta_{19} \hfill \\ \alpha_{11} \pm \Delta_{14} \Delta_{130} ,Y_{5} = \mu_{1m} \nu_{o10} + \mu_{m10} \nu_{1o} + L_{1m} \Upsilon_{o10} + L_{m10} \Upsilon_{1o} . \hfill \\ \end{gathered}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, KL., Mou, DS. & Dai, CQ. Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations. Nonlinear Dyn 111, 603–617 (2023). https://doi.org/10.1007/s11071-022-07833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07833-5

Keywords

Navigation