Skip to main content
Log in

Non-singular multi-complexiton wave to a generalized KdV equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The major goal of the current paper is to conduct a detailed study on a generalized KdV equation (gKdVE) and its non-singular multi-complexiton wave. More precisely, first the multi-shock wave of the governing model is retrieved using the principle of linear superposition. Based on the multi-shock wave and the techniques adopted by Zhou and Manukure, the non-singular multi-complexiton wave to the gKdVE is then constructed with the help of symbolic computations. The dynamical properties of single and double shock waves as well as non-singular single and double complexiton waves are analyzed by representing a group of 3D-plots. The achievements of the present paper take an important step in completing the research on the generalized KdV equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Inquiries about data availability should be directed to the authors.

References

  1. de Jager, E.M.: On the origin of the Korteweg–De Vries equation. arXiv.math/0602661 (2006)

  2. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wazwaz, A.M., Xu, G.Q.: An extended modified KdV equation and its Painlevé integrability. Nonlinear Dyn. 86, 1455–1460 (2016)

    Article  MATH  Google Scholar 

  4. Malik, S., Kumar, S., Das, A.: A (2+1)-dimensional combined KdV–mKdV equation: integrability, stability analysis and soliton solutions. Nonlinear Dyn. 107, 2689–2701 (2022)

    Article  Google Scholar 

  5. Hosseini, K., Salahshour, S., Baleanu, D., Mirzazadeh, M., Dehingia, K.: A new generalized KdV equation: its lump-type, complexiton, and soliton solutions. Int. J. Mod. Phys. B (2022). https://doi.org/10.1142/S0217979222502290

    Article  Google Scholar 

  6. Geng, X.: Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations. J. Phys. A Math. Theor. 36, 2289–2303 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Geng, X., Ma, Y.: N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation. Phys. Lett. A 369, 285–289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zha, Q.L., Li, Z.B.: Positon, negaton, soliton and complexiton solutions to a four-dimensional nonlinear evolution equation. Mod. Phys. Lett. B 23, 2971–2991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wazwaz, A.M.: New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: Multiple soliton solutions. Chaos Solitons Fractals 76, 93–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, N., Liu, Y.: New multi-soliton solutions of a (3+1)-dimensional nonlinear evolution equation. Comput. Math. Appl. 71, 1645–1654 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, H.Q., Ma, W.X.: Resonant multiple wave solutions for a (3+1)-dimensional nonlinear evolution equation by linear superposition principle. Comput. Math. Appl. 73, 2339–2343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, X., Wei, J., Geng, X.: Rational solutions for a (3+1)-dimensional nonlinear evolution equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105116 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou, Y., Manukure, S.: Complexiton solutions to the Hirota–Satsuma–Ito equation. Math. Meth. Appl. Sci. 42, 2344–2351 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Inc, M., Hosseini, K., Samavat, M., Mirzazadeh, M., Eslami, M., Moradi, M., Baleanu, D.: N-wave and other solutions to the B-type Kadomtsev–Petviashvili equation. Therm. Sci. 23, 2027–2035 (2019)

    Article  Google Scholar 

  15. Hosseini, K., Seadawy, A.R., Mirzazadeh, M., Eslami, M., Radmehr, S., Baleanu, D.: Multiwave, multicomplexiton, and positive multicomplexiton solutions to a (3+1)-dimensional generalized breaking soliton equation. Alex. Eng. J. 59, 3473–3479 (2020)

    Article  Google Scholar 

  16. Hosseini, K., Ma, W.X., Ansari, R., Mirzazadeh, M., Pouyanmehr, R., Samadani, F.: Evolutionary behavior of rational wave solutions to the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Phys. Scr. 95, 065208 (2020)

    Article  Google Scholar 

  17. Manukure, S., Chowdhury, A., Zhou, Y.: Complexiton solutions to the asymmetric Nizhnik–Novikov–Veselov equation. Int. J. Mod. Phys. B 33, 1950098 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hosseini, K., Baleanu, D., Rezapour, S., Salahshour, S., Mirzazadehh, M., Samavat, M.: Multi-complexiton and positive multi-complexiton structures to a generalized B-type Kadomtsev−Petviashvili equation. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.020

    Article  Google Scholar 

  19. Ma, W.X., Fan, E.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950–959 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, L., Khalique, C.M., Ma, W.X.: Classifying bilinear differential equations by linear superposition principle. Int. J. Mod. Phys. B 30, 1640029 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou, Y., Ma, W.X.: Complexiton solutions to soliton equations by the Hirota method. J. Math. Phys. 58, 101511 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hosseini, K., Akbulut, A., Baleanu, D., Salahshour, S., Mirzazadeh, M., Dehingia, K.: The Korteweg-de Vries–Caudrey–Dodd–Gibbon dynamical model: its conservation laws, solitons, and complexiton. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.003

    Article  Google Scholar 

  23. Hosseini, K., Akbulut, A., Baleanu, D., Salahshour, S., Mirzazadeh, M., Akinyemi, L.: The geophysical KdV equation: Its solitons, complexiton, and conservation laws. GEM Int. J. Geomath. 13, 12 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Article  Google Scholar 

  25. Kumar, S., Dhiman, S.K., Baleanu, D., Osman, M.S., Wazwaz, A.M.: Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 14, 597 (2022)

    Article  Google Scholar 

  26. Zhang, R.F., Li, M.C., Al-Mosharea, E., Zheng, F.C., Bilige, S.: Rogue waves, classical lump solutions and generalized lump solutions for Sawada–Kotera-like equation. Int. J. Mod. Phys. B 36, 2250044 (2022)

    Article  Google Scholar 

  27. Zhang, R.F., Li, M.C., Fang, T., Zheng, F.C., Bilige, S.: Multiple exact solutions for the dimensionally reduced p-gBKP equation via bilinear neural network method. Int. J. Mod. Phys. B 36, 2150590 (2022)

    MathSciNet  Google Scholar 

  28. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Article  Google Scholar 

  29. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  30. Wazwaz, A.M., Abu Hammad, M., El-Tantawy, S.A.: Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Article  Google Scholar 

  31. Kauar, L., Wazwaz, A.M.: Optical soliton solutions of variable coefficient Biswas–Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022)

    Article  Google Scholar 

  32. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Article  Google Scholar 

  33. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Article  Google Scholar 

  34. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+1)- and (2+1)-dimensional Kadomtsev–Petviashvili equations. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-08074-2

    Article  Google Scholar 

  35. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 154, 111692 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Hosseini, D. Baleanu or O. A. Obi.

Ethics declarations

Competing of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, K., Hincal, E., Baleanu, D. et al. Non-singular multi-complexiton wave to a generalized KdV equation. Nonlinear Dyn 111, 7591–7597 (2023). https://doi.org/10.1007/s11071-022-08208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08208-6

Keywords

Navigation