Skip to main content
Log in

Soliton resonances, soliton molecules, soliton oscillations and heterotypic solitons for the nonlinear Maccari system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Soliton resonances and soliton molecules have become a hot topic in the field of nonlinear science and engineering in recent years due to their potential applications. This work presents a systematic study of the soliton interaction dynamics of the Maccari system. Using the bilinear method, explicit first- and second-order solutions of the system are derived for the system. With these solutions and carefully chosen parameters, we observe various soliton interaction phenomena, such as soliton resonances, soliton molecules, soliton oscillations, and heterotypic solitons, including the V- and Y-type soliton, for the two dependent variables under two coordinate systems: space and spatiotemporal coordinate systems, respectively. Notably, we find that soliton molecules and heterotypic solitons exhibit completely different features under the two coordinate systems. The constraint conditions for the existence of soliton molecules are more restrictive in the spatiotemporal coordinate, and the occurrence of V- and Y-type soliton patterns is relatively rare in this coordinate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Ma, H.C., Chen, X.Y., Deng, A.P.: Resonance Y-type soliton and new hybrid solutions generated by velocity resonance for a (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation in a fluid. Nonlinear Dyn. 111, 7599–7617 (2022)

    Article  Google Scholar 

  2. Li, Z.T., Xu, S.W., Zhang, Y.S.: Rogue waves formation by solitons synchronization and resonance: Gerdjikov–Ivanov equation. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08426-6

    Article  Google Scholar 

  3. Ma, Y.L., Li, B.Q.: Soliton resonances for a transient stimulated Raman scattering system. Nonlinear Dyn. 111, 2631–2640 (2023)

    Article  Google Scholar 

  4. Li, B.Q., Ma, Y.L.: Hybrid soliton and breather waves, solution molecules and breather molecules of a (3+1)-dimensional Geng equation. Phys. Lett. A 463, 128672 (2023)

    Article  MATH  Google Scholar 

  5. Yang, X.Y., Fan, R., Li, B.: Soliton molecules and some novel interaction solutions to the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation. Phys. Scri. 95, 045213 (2020)

    Article  Google Scholar 

  6. Li, B.Q., Ma, Y.L.: Soliton resonances and soliton molecules of pump wave and Stokes wave for a transient stimulated Raman scattering system in optics. Eur. Phys. J. Plus 137, 1227 (2022)

    Article  Google Scholar 

  7. Yue, J., Zhao, Z.L.: Interaction solutions and molecule state between resonance Y-type solitons and lump waves, and transformed 2-breather molecular waves of a (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation. Nonlinear Dyn. 111, 7565–7589 (2023)

    Article  Google Scholar 

  8. Li, B.Q., Ma, Y.L.: Optical soliton resonances and soliton molecules for the Lakshmanan–Porsezian–Daniel system in nonlinear optics. Nonlinear Dyn. 111, 6689–6699 (2023)

    Article  Google Scholar 

  9. Ma, Y.L., Li, B.Q.: Dynamics of soliton resonances and soliton molecules for the AB system in two-layer fluids. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08529-0

    Article  Google Scholar 

  10. Batalov, S.V., Shagalov, A.G.: Resonant control of solitons. Phys. Lett. A 377, 964–967 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, Z.C., Li, H.H., Wang, P.: Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers. Opt. Express 23, 5972–5981 (2015)

    Article  Google Scholar 

  12. Xu, Z.W., Zhang, Z.X.: Diverse output states from an all-normal dispersion ytterbium-doped fiber laser: Q-switch, dissipative soliton resonance, and noise-like pulse. Opt. Laser Technol. 48, 67–71 (2013)

    Article  Google Scholar 

  13. Liu, C.H., Klimczak, M., Buczynski, R., Tang, X.H., Tang, M., Zhu, H.Y., Zhao, L.M.: Multimode dissipative-soliton-resonance pulses in a Yb-doped fiber laser. Opt. Commun. 535, 129361 (2023)

    Article  Google Scholar 

  14. Liu, F., Li, J.F., Luo, H.Y., Yuan, X.Q., Wang, X.H., Yan, A., Liu, Y.: Efficient Raman pulse fiber laser pumped by a dissipative soliton resonance pulse near 2 mu m. Opt. Express 31, 6741–6749 (2023)

    Article  Google Scholar 

  15. Ma, X.R., Feng, T.L., Zhao, S.Z., Liu, Y.Z., Wang, C., Shang, J.C., Hu, P., Mao, J.J., Yang, K.J., Li, T.: Dissipative soliton resonance and noise-like pulse in a self-pulsing fiber laser. Opt. Laser Technol. 157, 108754 (2023)

    Article  Google Scholar 

  16. Maccari, A.: Universal and integrable nonlinear evolution systems of equations in (2+1) dimensions. J. Math. Phys. 38, 4151–4166 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pekcan, A.: Local and nonlocal (2+1)-dimensional Maccari systems and their soliton solutions. Phys. Scr. 96, 035217 (2021)

    Article  Google Scholar 

  18. Sivatharani, B., Subramanian, K., Rajan, M.S.M., Alagesan, T.: A class of nonlinear wave patterns for (2+1) dimensional coupled integrable Maccari’s system. Phys. Scr. 98, 045220 (2023)

    Article  Google Scholar 

  19. Thilakavathy, J., Amrutha, R., Subramanian, K., Rajan, M.S.M.: Different wave patterns for (2+1) dimensional Maccari’s equation. Nonlinear Dyn. 108, 445–456 (2022)

    Article  Google Scholar 

  20. Maccari, A.: The Kadomtsev–Petviashvili equation as a source of integrable model equations. J. Math. Phys. 37, 6207 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shulman, E.I.: On the integrability of equations of Davey–Stewartson type. Theor. Math. Phys. 56, 720–724 (1983)

    Article  MathSciNet  Google Scholar 

  22. Davey, A., Stewartson, K.: On three-dimensional packets of surface waves. Proc. R. Soc. London A 338, 101 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, X.Y., Lou, S.Y., Zhang, Y.: Localized excitations in (2+1)-dimensional systems. Phys. Rev. E 66, 046601 (2002)

    Article  MathSciNet  Google Scholar 

  24. Zhang, S.: Exp-function method for solving Maccari’s system. Phys. Lett. A 371, 65–71 (2007)

    Article  MATH  Google Scholar 

  25. Subramanian, K., Kumar, C.S., Radha, R., Alagesan, T.: Elusive noninteracting localized solutions of (2+1)-dimensional Maccari equation Rom. Rep. Phys. 69, 107 (2017)

    Google Scholar 

  26. Wazwaz, A.M.: Abundant soliton and periodic wave solutions for the coupled Higgs field equation, the Maccari system and the Hirota-Maccari system. Phys. Scr. 85, 065011 (2012)

    Article  MATH  Google Scholar 

  27. Issasfa, A., Lin, J.: N-soliton and rogue wave solutions of (2+1)-dimensional integrable system with Lax pair. Int. J. Mod. Phys. B 33, 1950317 (2019)

    Article  MathSciNet  Google Scholar 

  28. Liu, L., Tian, B., Yuan, Y.Q., Sun, Y.: Bright and dark N-soliton solutions for the (2 + 1)-dimensional Maccari system. Eur. Phys. J. Plus 133, 72 (2018)

    Article  Google Scholar 

  29. Baskonus, H.M., Sulaiman, T.A., Bulut, H.: On the novel wave behaviors to the coupled nonlinear Maccari’s system with complex structure. Optik 131, 1036–1043 (2017)

    Article  Google Scholar 

  30. Wang, G.H., Wang, L.H., Rao, J.G., He, J.S.: New Patterns of the two-dimensional rogue waves: (2+1)-dimensional Maccari System. Commun. Theor. Phys. 67, 601–610 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiang, Y., Rao, J.G., Mihalache, D., He, J.S., Cheng, Y.: Rogue breathers and rogue lumps on a background of dark line solitons for the Maccari system. Commun. Nonlinear Sci. Numer. Simul. 102, 105943 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hirota, R.: Exact Solution of the Modified Korteweg-de Vries Equation for Multiple Collisions of Solitons. J. Phys. Soc. Jpn. 33, 1456–1458 (1972)

    Article  Google Scholar 

  33. Hirota, R., Satsuma, J.: N-soliton solutions of model equations for shallow-water waves. J. Phys. Soc. Jpn. 40, 611–612 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: A new (3+1)-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves. Math. Comput. Simul. 187, 505–519 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: Novel bifurcation solitons for an extended Kadomtsev–Petviashvili equation in fluids. Phys. Lett. A 413, 127585 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Article  Google Scholar 

  37. Wazwaz, A.M.: Multiple-soliton solutions for the Boussinesq equation. Appl. Math. Comput. 192, 479–486 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Yin, Y.H., Ma, W.X., Liu, J.G., Lu, X.: Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76, 1275–1283 (2018)

  39. Lu, X., Zhu, H.W., Meng, X.H., Yang, Z.C., Tian, B.: Soliton solutions and a Backlund transformation for a generalized nonlinear Schrodinger equation with variable coefficients from optical fiber communications. J. Math. Anal. Appl. 336, 1305–1315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, W.J., Yu, W.T., Yang, C.Y., Liu, M.L., Zhang, Y.J., Lei, M.: Analytic solutions for the generalized complex Ginzburg-Landau equation in fiber lasers. Nonlinear Dyn. 89, 2933–2939 (2017)

    Article  MathSciNet  Google Scholar 

  41. Liu, X.Y., Triki, H., Zhou, Q., Liu, W.J., Biswas, A.: Analytic study on interactions between periodic solitons with controllable parameters. Nonlinear Dyn. 94, 703–709 (2018)

    Article  Google Scholar 

  42. Ma, Y.L., Li, B.Q.: Bifurcation solitons and breathers for the nonlocal Boussinesq equations. Appl. Math. Lett. 124, 107677 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yu-Lan Ma: Conceptualization, Software, Validation, Writing - review and editing, Methodology. Abdul-Majid Wazwaz: Conceptualization, Methodology. Bang-Qing Li: Methodology, Formal analysis, Data curation, Writing - original draft.

Corresponding author

Correspondence to Bang-Qing Li.

Ethics declarations

Compliance with ethical standards

The authors ensure the compliance with ethical standards for this work.

Conflict of interest:

The authors declare that there are no conflicts of interests with publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YL., Wazwaz, AM. & Li, BQ. Soliton resonances, soliton molecules, soliton oscillations and heterotypic solitons for the nonlinear Maccari system. Nonlinear Dyn 111, 18331–18344 (2023). https://doi.org/10.1007/s11071-023-08798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08798-9

Keywords

Navigation