Skip to main content
Log in

The Effects of Pre-Oxidation and Alloy Chemistry of Austenitic Stainless Steels on Glass/Metal Sealing

  • ORIGINAL PAPER
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

An oxidation treatment is often performed on austenitic stainless steel prior to joining to alkali barium silicate glass to produce hermetic seals. The thin oxide formed during this pre-oxidation step acts as a transitional layer and a source of Cr and other elements that diffuse into the glass during the subsequent bonding process. Pre-oxidation is performed in a low pO2 atmosphere to avoid iron oxide formation; the final oxide is composed of Cr2O3, MnCr2O4 spinel, and SiO2. Significant heat-to-heat variations in the oxidation behavior of austenitic stainless steel were observed in this work, resulting in inconsistent glass/metal seal behavior. Twenty-five (25) stainless steel heats were examined including 304L, 316L, and experimental high sulfur alloys similar to 303SS. The objectives were to characterize the oxidation kinetics, the oxide morphologies, and compositions that affect glass/metal adhesion. It was found that poor glass sealing is associated with a more continuous layer of SiO2 at the metal/oxide interface. The effects of alloy chemistry, in particular Mn and Si concentrations, on glass/metal sealing behavior were empirically determined. A criterion based on the Mn/Si ratio was developed for use in selecting heats with good glass/metal bonding characteristics. To test this criterion, four other austenitic stainless steels were evaluated: 21-6-9 (also known by original Armco Steel Co. trade name Nitronic® 40), 22-13-5 (Nitronic® 50), Nitronic® 60, and Gall-Tough® (Carpenter Technology Corp.). These alloys have compositions significantly different from 300-series alloys, but they were still found to comply with the compositional guidelines developed for predicting glass/metal adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. I. W. Donald, Glass-To-Metal Seals (Society of Glass Technology, Sheffield, UK, 2007).

    Google Scholar 

  2. I. W. Donald, Journal of Materials Science 28, 2841 (1993).

    Article  CAS  ADS  Google Scholar 

  3. J. A. Pask and A. P. Tomsia, in Engineered Materials Handbook, Vol. 4, Ceramics and Glasses, S. J. Schneider (Vol. Chair), R. E. Loehman (Joining Section Chair) (ASM International, 1991), p. 482.

  4. A. P. Tomsia, J. A. Pask, and R. E. Loehman, in Engineered Materials Handbook, Vol. 4, Ceramics and Glasses, S. J. Schneider (Vol. Chair), R. E. Loehman (Joining Section Chair) (ASM International, 1991), p. 493.

  5. C. J. Leedecke, P. C. Baird, and K. D. Orphanides, in Electronic Materials Handbook (ASM International, Materials Park, OH, 1989), p. 455.

  6. M. Mantel, Journal of Non-Crystalline Solids 273, 294 (2000).

    Article  CAS  ADS  Google Scholar 

  7. D. F. Susan, J. A. Van Den Avyle, S. L. Monroe, N. R. Sorensen, B. B. McKenzie, J. R. Michael, J. E. Christensen, and C. A. Walker, in 3rd Int. Brazing and Soldering Conference (ASM International, San Antonio, TX, April 2006), p. 104.

  8. D. F. Susan, J. A. Van Den Avyle, S. L. Monroe, N. R. Sorensen, B. B. McKenzie, J. R. Michael, J. E. Christensen, and C. A. Walker, in Proc. 30th Int. Conf. Adv. Ceramics and Composites (2006), ed. R. Tandon (John Wiley and Sons Inc, Cocoa Beach, FL, 2007), p. 145.

  9. G. J. Yurek, D. Eisen, and A. Garratt-Reed, Metallurgical Transactions A 13A, 473 (1982).

    Article  CAS  ADS  Google Scholar 

  10. F. H. Stott, G. J. Gabriel, F. I. Wei, and G. C. Wood, Werkstoffe und Korrosion 38, 521 (1987).

    Article  CAS  Google Scholar 

  11. F. H. Stott, F. I. Wei, and C. A. Enahoro, Werkstoffe und Korrosion 40, 198 (1989).

    Article  CAS  Google Scholar 

  12. H. Fujikawa, J. Murayama, N. Fujino, and T. Moroishi, The Sumitomo Search 31, 63 (1985).

    CAS  Google Scholar 

  13. M. D. Merz, Metallurgical Transactions A 10A, 71 (1979).

    Article  CAS  Google Scholar 

  14. M. Shindo and T. Kondo, Tetsu-To-Hagane (J. Iron and Steel Inst. Japan) 68, 1628 (1982).

    CAS  Google Scholar 

  15. S.-H. Park, Y.-Y. Lee, Y.-D. Lee, and K.-Y. Kim, Proceedings of Microscopy of Oxidation 3, 551 (1997).

    Google Scholar 

  16. S. N. Basu and G. J. Yurek, Oxidation of Metals 36, 281 (1991).

    Article  CAS  Google Scholar 

  17. J. S. Dunning, D. E. Alman, and J. C. Rawers, Oxidation of Metals 57, 409 (2002).

    Article  CAS  Google Scholar 

  18. H. Fujikawa, T. Morimoto, Y. Nishiyama, and S. B. Newcomb, Oxidation of Metals 59, 23 (2003).

    Article  CAS  Google Scholar 

  19. E. A. Gulbransen and K. F. Andrew, Journal of the Electrochemical Society 109, 560 (1962).

    Article  CAS  Google Scholar 

  20. D. C. Kothari, L. Guzman, E. Voltolini, M. Dapor, A. Tomasi, S. Gialanella, and P. Scardi, Materials Science and Engineering A A116, 89 (1989).

    Article  Google Scholar 

  21. Z. Kubes, J. Vesela, and Z. Weiss, Journal of Materials Science Letters 14, 876 (1995).

    Article  CAS  Google Scholar 

  22. A. Sabioni, A.-M. Huntz, E. Coceicao da Luz, M. Mantel, and C. Haut, Materials Research 6, 179 (2003).

    CAS  Google Scholar 

  23. D. P. Whittle and G. C. Wood, Journal of the Electrochemical Society 114, 986 (1967).

    Article  CAS  Google Scholar 

  24. R. K. Wild, Corrosion Science 17, 87 (1977).

    Article  CAS  Google Scholar 

  25. A. Paul, S. Elmrabet, F. J. Ager, J. A. Odriozola, M. A. Respaldiza, M. F. da Silva, and J. C. Soares, Oxidation of Metals 57, 33 (2002).

    Article  CAS  Google Scholar 

  26. AMS 2700B, Aerospace Materials Specification (Society of Automotive Engineers, 2004).

  27. R. E. Loehman and P. G. Kotula, Journal of the American Ceramic Society 87, 55 (2004).

    Article  CAS  Google Scholar 

  28. D. G. Lees, Oxidation of Metals 27, 75 (1987).

    Article  CAS  Google Scholar 

  29. A. Paul, R. Sanchez, O. M. Montes, and A. J. Odriozola, Oxidation of Metals 67, 87 (2007).

    Article  CAS  Google Scholar 

  30. M. J. Bennet, J. A. Desport, and P. A. Labun, Oxidation of Metals 22, 291 (1984).

    Article  Google Scholar 

  31. M. J. Bennett, D. J. Buttle, P. D. Colledge, J. B. Price, C. B. Scruby, and K. A. Stacey, Materials Science and Engineering A A120, 199 (1989).

    Article  Google Scholar 

  32. T. Adachi and G. H. Meier, Oxidation of Metals 27, 347 (1987).

    Article  CAS  Google Scholar 

  33. Y. Saito, T. Maruyama, and T. Amano, Materials Science and Engineering 87, 275 (1987).

    Article  CAS  Google Scholar 

  34. F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  CAS  Google Scholar 

  35. D. L. Douglass and J. S. Armijo, Oxidation of Metals 2, 207 (1970).

    Article  CAS  Google Scholar 

  36. A. Kumar and D. L. Douglass, Oxidation of Metals 10, 1 (1976).

    Article  CAS  Google Scholar 

  37. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster, Oxidation of Metals 19, 1 (1983).

    Article  CAS  Google Scholar 

  38. B. Li and B. Gleeson, Oxidation of Metals 65, 101 (2006).

    Article  CAS  Google Scholar 

  39. D. F. Susan, M. J. Perricone, C. V. Robino, J. R. Michael, B. B. McKenzie, and M. Rodriguez, in Joining of Advanced and Specialty Materials IX, Mat. Sci. Tech. 2007 (ASM International, Detroit, MI, 2007).

Download references

Acknowledgements

The authors would like to thank MicroMode Products Inc., El Cajon, CA, for glass/metal seal processing expertise. Thanks also to Alice Kilgo for metallographic sample preparation, Mark Reece for sample preparation for oxidation and sessile drop tests, and Mark Rodriguez for X-ray diffraction analysis and interpretation. The careful review of the manuscript by Dr. M. J. Perricone is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Susan.

Additional information

Sandia National Laboratories—Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Dept. of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Susan, D.F., Van Den Avyle, J.A., Monroe, S.L. et al. The Effects of Pre-Oxidation and Alloy Chemistry of Austenitic Stainless Steels on Glass/Metal Sealing. Oxid Met 73, 311–335 (2010). https://doi.org/10.1007/s11085-009-9181-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9181-y

Keywords

Navigation