Skip to main content
Log in

HCl-Induced High Temperature Corrosion of Stainless Steels in Thermal Cycling Conditions and the Effect of Preoxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Gaseous HCl released during combustion is one reason for the severe materials degradation often encountered in power generation from waste and biomass. In this study, three stainless steels (the low alloyed EN 1.4982, the standard EN 1.4301 and the higher alloyed EN 1.4845) were tested by repeated thermal cycling in an environment comprising N2–10%O2–5%H2O–0.05%HCl at both 400 and 700 °C. The materials were exposed with ground surfaces and preoxidised at 400 or 700 °C. A positive effect of preoxidation is evident when alloys are exposed at 400 °C. Oxide layers formed during preoxidation effectively suppress chlorine ingress for all three materials, while chlorine accumulation at the metal/oxide interface is detected for surface ground specimens. The positive effect of preoxidation is lost at 700 °C and corrosion resistance is dependent on alloying level. At 700 °C metal chloride evaporation contributes significantly to the material degradation. Based on the results, high temperature corrosion in chlorinating environments is discussed in general terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. S. Jacobson, Oxidation of Metals 26, 157 (1986).

    Article  CAS  Google Scholar 

  2. Y. Y. Lee and M. J. McNallan, Metallurgical Transactions A 18A, 1099 (1987).

    CAS  Google Scholar 

  3. F. H. Stott and C. Y. Shih, Materials and Corrosion 51, 277 (2000).

    Article  CAS  Google Scholar 

  4. A. Zahs, M. Spiegel, and H. J. Grabke, Corrosion Science 42, 1093 (2000).

    Article  CAS  Google Scholar 

  5. H. Asteman and M. Spiegel, Corrosion Science 49, 3626 (2007).

    Article  CAS  Google Scholar 

  6. A. Zahs, M. Spiegel, and H. J. Grabke, Materials and Corrosion 50, 561 (1999).

    Article  CAS  Google Scholar 

  7. N. Folkesson, L. G. Johansson, and J. E. Svensson, Journal of Electrochemical Society 154, 515 (2007).

    Article  Google Scholar 

  8. S. Chevalier, S. Ched’homme, A. Bekaddour, K. Amilain-Basset, and L. Buisson, Materials and Corrosion 58, 353 (2007).

    Article  CAS  Google Scholar 

  9. P. Kofstad, High Temperature Corrosion, Chap. 11, (Elsevier Applied Science, London, 1988).

  10. A. L. Marasco and D. Young, Oxidation of Metals 36, 157 (1991).

    Article  CAS  Google Scholar 

  11. F. Liu, J. E. Tang, T. Jonsson, S. Canovic, K. Segerdahl, J. E. Svensson, and M. Halvarsson, Oxidation of Metals 66, 295 (2006).

    Article  CAS  Google Scholar 

  12. F. Liu, J. E. Tang, H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, Oxidation of Metals 71, 77 (2009).

    Article  CAS  Google Scholar 

  13. H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, and L. L. Baxter, Progress in Energy and Combustion Science 26, 283 (2000).

    Article  CAS  Google Scholar 

  14. P. Steinmetz and C. Rapin, Materials Science Forum 251–254, 505 (1997).

    Article  Google Scholar 

  15. G. Y. Lai, High-Temperature Corrosion and Materials Application, Chap. 12, (ASM International, Materials Park, Ohio, 2007).

  16. J.-M. Abels and H.-H. Strehblow, Corrosion Science 39, 115 (1997).

    Article  CAS  Google Scholar 

  17. P. Szakalos, P. Henderson, and R. Pettersson, Proceedings of the 16th International Corrosion Conference, (Beijing, China, 2005).

  18. B. Sundman, B. Jansson, and J.-O. Andersson, Calphad 9, 153 (1985).

    Article  CAS  Google Scholar 

  19. U. Nieken and O. Watzenburger, Chemical Engineering Science 54, 2619 (1999).

    Article  CAS  Google Scholar 

  20. B. K. Gullet, Chemosphere 20, 1945 (1990).

    Article  Google Scholar 

  21. HSC Chemistry for windows v 4.1, Outokumpu Research Oy, software and database

  22. R. Pettersson, J. Flyg, and P. Viklund, Corrosion Engineering, Science and Technology 43, 123 (2008).

    Article  CAS  Google Scholar 

  23. P. Viklund, R. Pettersson, A. Hjörnhede, P. Henderson, and P. Sjövall, Proceedings Eurocorr, The European Corrosion Congress, Paper no. 1289 (Edinburg, UK, 2008)

  24. E. Reese, E. M. Muller-Lorenz, and H. J. Grabke, Journal de Physique 3, 133 (1993).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with a financial support from the Research Fund for Coal and Steel of the European Community under contract no. RFS-CR-03020. Thanks are expressed to Dan Jacobsson and David Lindell at Swerea KIMAB for help with XRD-analyses. Magnus Nordling at Swerea KIMAB is also acknowledged for guidance through calculations with the HSC database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Viklund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viklund, P., Pettersson, R. HCl-Induced High Temperature Corrosion of Stainless Steels in Thermal Cycling Conditions and the Effect of Preoxidation. Oxid Met 76, 111–126 (2011). https://doi.org/10.1007/s11085-010-9227-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9227-1

Keywords

Navigation