Skip to main content
Log in

Residual Stress Analysis Due to Chemomechanical Coupled Effect, Intrinsic Strain and Creep Deformation During Oxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Metal oxidation at high temperature is often accompanied with the stress generation both in the metal substrate and the growing oxide scale. In this paper, taking into account the growth strain, intrinsic strain and creep deformation, a new analysis model to characterize the residual stress evolutions during an isothermal oxidation process is developed on the basis of the mechanical-balance and moment-equilibrium equations. In this model, the growth strain and the stress are coupled based on an evolving equation, which reduces to the Clarke’s assumption if the stress influence on the growth strain of the oxide scale is ignored. The curvature describing the bending of the system is expressed. Euler numerical method is adopted to simulate the stress evolution and the comparisons among the present model, Zhang’s creep solution and the experimental results are also performed. Finally, effects of creep constants, substrate thickness and intrinsic strain on the residual stress distribution in the oxide scale/metal substrate are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Huang and A. J. Rosakis, J. Mech. Phys. Solids. 53, 2483–2500 (2005).

    Article  Google Scholar 

  2. M. A. Brown, A. J. Rosakis, X. Feng, Y. Huang and E. Üstündag, Int. J. Solids Struct. 44, 1755–1767 (2007).

    Article  Google Scholar 

  3. A. Saillard, M. Cherkaoui, L. Capolungo and E. P. Busso, Philos. Mag. 90, 2651 (2010).

  4. H. E. Evans, Stress effects in high temperature oxidation of metals. Int. mater. Rev. 40, 1 (1995).

    Article  Google Scholar 

  5. D. R. Clarke, Acta Mater. 51, 1393 (2003).

    Article  Google Scholar 

  6. B. Panicaud, J. L. Grossard-Poussard and J. F. Dinhut, Appl. Surf. Sci. 252, 5700 (2006).

    Article  Google Scholar 

  7. N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 529 (1923).

    Google Scholar 

  8. F. N. Rhines and J. S. Wolf, Metall. Trans. 1, 1701 (1970).

    Article  Google Scholar 

  9. V. Tolpygo, J. Dryden and D. R. Clarke, Acta Mater. 46, 927 (1998).

    Article  Google Scholar 

  10. S. Maharjan, X. C. Zhang, F. Z. Xuan, Z. D. Wang and S. T. Tu, J. Appl. Phys. 110, 063511 (2011).

  11. J. L. Ruan, Y. M. Pei and D. N. Fang, Acta Mech. 223, 2597(2012).

    Article  Google Scholar 

  12. Q. Q. Chen, F. Z. Xuan and S. T. Tu, Mater. Sci. Eng. A. 497, 471 (2008).

    Article  Google Scholar 

  13. B. Panicaud, J. Grosseau-Poussard and J. F. Dinhut, Comput. Mater. Sci. 42, 286 (2008).

    Article  Google Scholar 

  14. S. Maharjan, X. C. Zhang and Z. D. Wang, J. Appl. Phys. 112, 033514 (2012).

  15. H. L. Wang, Y. H. Suo and S. P. Shen, Oxid. Met. 83, 507 (2015).

    Article  Google Scholar 

  16. L. C. Stephen, Nature 487, 176 (2012).

    Article  Google Scholar 

  17. C. R. Hickenboth and J. Moore, Nature 446, 423 (2007).

    Article  Google Scholar 

  18. T. J. Delph, J. Appl. Phys. 83, 786 (1998).

    Article  Google Scholar 

  19. H. E. Evans, D. J. Norfolk and T. Swan, J. Electrochem. Soc. 125, 1180 (1978).

    Article  Google Scholar 

  20. Y. H. Suo and S. P. Shen, J. Appl. Phys. 114, 164905 (2013).

  21. H. Miura, H. Ohta, N. Okamoto and T. Kaga, Appl. Phys. Lett. 60, 2746 (1992).

    Article  Google Scholar 

  22. E. Kobeda and E. A. Irene, J. Vac. Sci. Technol. B6, 574 (1998).

    Google Scholar 

  23. S. R. J. Saunders, H. E. Evans, M. Li, D. D. Gohil and S. Osgerby, Oxid. Met. 48, 189 (1997).

    Article  Google Scholar 

  24. D. R. Clarke, Curr. Opin. Solid State Mater. Sci. 6, 237 (2002).

    Article  Google Scholar 

  25. S. L. Hu and S. P. Shen, Acta Mech. 224, 2895 (2013).

    Article  Google Scholar 

  26. X. L. Dong, X. Feng and K. C. Hwang, J. Appl. Phys. 112, 023502 (2012).

  27. X. C. Zhang, B. S. Xu, H. D. Wang and Y. X. Wu, J. Appl. Phys. 101, 083530 (2007).

Download references

Acknowledgments

The supports from NSFC (Grants Nos. 11372238, 11302161, 11402054 and 11321062), Project Funded by China Postdoctoral Science Foundation (No. 2015M570552) and Scientific Research Program Funded by Shaanxi Provincial Education Commission (No. 13JK0611) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaohong Suo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, Y., Yang, X. & Shen, S. Residual Stress Analysis Due to Chemomechanical Coupled Effect, Intrinsic Strain and Creep Deformation During Oxidation. Oxid Met 84, 413–427 (2015). https://doi.org/10.1007/s11085-015-9562-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9562-3

Keywords

Navigation