Skip to main content
Log in

Comparison of Isothermal with Cyclic Oxidation Behavior of “Cr-Aluminide” Coating on Inconel 738LC at 900 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A two-step pack cementation technique was used to cover nickel-based IN-738LC superalloy with a Cr-aluminide coating layer. The IN-738LC/Cr-aluminide samples were oxidized at 900 °C for 350 and 700 h, isothermally, and 175 and 350 h, cyclically. Each cycle lasted for 25 h. Effects of the isothermal and the cyclic oxidation on (a) morphology, (b) new-phase formation, (c) weight gain, and (d) oxidation reactions were investigated by scanning electron microscopy, electron dispersive spectroscopy, X-ray diffraction, and weight gain measurements. From results, it was concluded that the oxygen attack was more severe during the cyclic oxidation than the isothermal procedure. Kinetics of the reactions indicated a parabolic rate law for the isothermal process, while the cyclic oxidation firstly followed a similar parabolic rate law which was trailed later on by a severe surface spallation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F. H. Latief, E.-S. M. Sherif and K. Kakehi, International Journal of Electrochemical Science 10, 1873 (2015).

    Google Scholar 

  2. S. Jiang, C. Xu, H. Li, S. Liu, J. Gong and C. Sun, Corrosion Science 52, 435 (2010).

    Article  Google Scholar 

  3. C. Fu, C. Wang, Z. Ren and G. Cao, Corrosion Science 98, 211 (2015).

    Article  Google Scholar 

  4. J. R. Nicholls, JOM 52, 28 (2000).

    Article  Google Scholar 

  5. B. M. Warnes, Surface and Coatings Technology 163–164, 106 (2003).

    Article  Google Scholar 

  6. J.-W. Lee and Y.-C. Kuo, Surface and Coatings Technology 200, 1225 (2005).

    Article  Google Scholar 

  7. M. C. Galetz, X. Montero, M. Mollard, M. Günthner, F. Pedraza and M. Schütze, Intermetallics 44, 8 (2014).

    Article  Google Scholar 

  8. C. Zhou, H. Xu, S. Gong, Y. Yang and K. Young Kim, Surface and Coatings Technology 132, 117 (2000).

    Article  Google Scholar 

  9. D. K. Das, Progress in Materials Science 58, 151 (2013).

    Article  Google Scholar 

  10. G. Goward and D. Boone, Oxidation of Metals 3, 475 (1971).

    Article  Google Scholar 

  11. G. Goward and L. Cannon, Journal of Engineering for Gas Turbines and Power 110, 150 (1988).

    Article  Google Scholar 

  12. P. Shen, M. Tsai and D. Gan, Materials Science and Engineering 82, 197 (1986).

    Article  Google Scholar 

  13. W. Da Costa, B. Gleeson and D. Young, Journal of the Electrochemical Society 141, 1464 (1994).

    Article  Google Scholar 

  14. S. Rastegari, H. Arabi, M. Aboutalebi and A. Eslami, Canadian Metallurgical Quarterly 47, 223 (2008).

    Article  Google Scholar 

  15. H. He, Z. Liu, W. Wang and C. Zhou, Corrosion Science 100, 466 (2015).

    Article  Google Scholar 

  16. D. Wu, S. Jiang, Q. Fan, J. Gong and C. Sun, Acta Metallurgica Sinica (English Letters) 27, 627 (2014).

    Article  Google Scholar 

  17. R. Streiff and D. Boone, Journal of Materials Engineering 10, 15 (1988).

    Article  Google Scholar 

  18. R. Prescott and M. Graham, Oxidation of Metals 38, 233 (1992).

    Article  Google Scholar 

  19. R. Mevrel, C. Duret and R. Pichoir, Materials Science and Technology 2, 201 (1986).

    Article  Google Scholar 

  20. C. Duret, A. Davin, G. Marijnissen, and R. Pichoir, High Temperature Alloys for Gas Turbines, (Springer, The Netherlands, 1982), p. 53.

  21. E. Godlewska and K. Godlewski, Oxidation of Metals 22, 117 (1984).

    Article  Google Scholar 

  22. C. E. Lowell, Oxidation of Metals 7, 95 (1973).

    Article  Google Scholar 

  23. S. Bose, High Temperature Coatings, (Elsevier, Oxford, 2011).

  24. T. N. Rhys-Jones, Corrosion Science 29, 623 (1989).

    Article  Google Scholar 

  25. R. Rajendran, Engineering Failure Analysis 26, 355 (2012).

    Article  Google Scholar 

  26. K. P. Severin, Energy Dispersive Spectrometry of Common Rock Forming Minerals, (Springer, The Netherlands, 2008).

  27. R. K. Gupta, N. Birbilis, and J. Zhang, in Corrosion Resistance, ed. H. Shih, (INTECH Publisher, Osaka, 2012), p. 213.

  28. B. Gleeson, W. Wang, S. Hayashi and D. J. Sordelet, Materials Science and Forum 461, 213 (2000).

    Google Scholar 

  29. W. Hagel, Corrosion 21, 316 (1965).

    Article  Google Scholar 

  30. T. An, H. Guan, X. Sun and Z. Hu, Oxidation of Metals 54, 301 (2000).

    Article  Google Scholar 

  31. S. Bose, High Temperature Coatings, (Elsevier, Oxford, 2007).

  32. Y. Kim and G. Belton, Metallurgical Transactions 5, 1811 (1974).

    Article  Google Scholar 

  33. M. Machkova, A. Zwetanova, V. Kozhukharov and S. Raicheva, Journal of the University of Chemical Technology and Metallurgy 43, (1), 53–58 (2008).

    Google Scholar 

  34. S. Seal, S. C. Kuiry and L. A. Bracho, Oxidation of Metals 57, 297 (2002).

    Article  Google Scholar 

  35. k. Yuan, Oxidation and corrosion of new MCrAlX coatings: modelling and experiments, Dissertation No. 1619, (Linköping University, Institute of technology, 2014).

  36. E. Schumann, C. Sarioglu, J. Blachere, F. Pettit and G. Meier, Oxidation of Metals 53, 259 (2000).

    Article  Google Scholar 

  37. V. Tolpygo and D. Clarke, Surface and Coatings Technology 120, 1 (1999).

    Article  Google Scholar 

  38. F. Stott, Materials Science and Technology 4, 431 (1988).

    Article  Google Scholar 

  39. M. Schütze, Oxidation of Metals 44, 29 (1995).

    Article  Google Scholar 

  40. H. Svensson, K. Stiller and J. Angenete, Materials Science Forum 461, 231 (2004).

    Article  Google Scholar 

  41. V. K. Tolpygo and D. Clarke, Acta Materialia 52, 5115 (2004).

    Article  Google Scholar 

  42. B. Bouchaud, J. Balmain and F. Pedraza, Oxidation of Metals 69, 193 (2008).

    Article  Google Scholar 

  43. P. Hou, A. Paulikas and B. Veal, Materials at High Temperatures 22, 535 (2005).

    Article  Google Scholar 

  44. N. Mu, High temperature oxidation behavior of gamma-nickel + gamma’-nickel aluminum alloys and coatings modified with platinum and reactive elements, (ProQuest, Michigan, 2007).

  45. B. Wang, C. Sun, J. Gong, R. Huang and L. Wen, Corrosion Science 46, 519 (2004).

    Article  Google Scholar 

  46. H. Probst and C. Lowell, JOM 40, 18 (1988).

    Article  Google Scholar 

  47. J. L. Smialek, Metallurgical Transactions A 9, 309 (1978).

    Article  Google Scholar 

  48. D. Monceau and D. Poquillon, Oxidation of Metals 61, 143 (2004).

    Article  Google Scholar 

  49. M. Bestor, J. Alfano and M. Weaver, Intermetallics 19, 1693 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sadrnezhaad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi Doolabi, M., Ghasemi, B., Sadrnezhaad, S.K. et al. Comparison of Isothermal with Cyclic Oxidation Behavior of “Cr-Aluminide” Coating on Inconel 738LC at 900 °C. Oxid Met 87, 57–74 (2017). https://doi.org/10.1007/s11085-016-9657-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9657-5

Keywords

Navigation