Skip to main content
Log in

Influence of Discharge Atmosphere on the Ageing Behaviour of Plasma-Treated Polylactic Acid

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effect of a plasma treatment on polymers is not permanent, since the treated surfaces tend to recover to the untreated state (ageing process). This paper investigates the influence of discharge atmosphere on the ageing behaviour of plasma-treated PLA foils: these foils are plasma-treated with a DBD in 4 different atmospheres (air, nitrogen, argon and helium) and are subsequently stored in air. Results of contact angle and XPS measurements show that the discharge gas has a significant influence on the ageing behaviour of the PLA foils. This influence can be explained by the different cross-linking degree of the plasma-treated surfaces: helium and argon plasma-treated PLA films have a high cross-linking degree, which limits polymer chain mobility and as a result reduces the ageing process. In contrast, the ageing behaviour of air and nitrogen plasma-treated films is more pronounced due to their low cross-linking degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alves CM, Yang Y, Marton D, Carnes DL, Ong JL, Sylvia VL, Dean DD, Reis RL, Agrawal CM (2008) J Biomed Mater Res B 87B:59

    Article  Google Scholar 

  2. Ding Z, Chen JN, Gao SY, Chang JB, Zhang JF, Kang ET (2004) Biomaterials 25:1059

    Article  Google Scholar 

  3. De Geyter N, Morent R, Leys C, Gengembre L, Payen E (2007) Surf Coat Technol 201:7066

    Article  Google Scholar 

  4. Kill G, Hunter DH, McIntyre NS (1996) J Polym Sci Pol Chem 34:2299

    Article  Google Scholar 

  5. Tsafack MJ, Levalois-Grutzmacher J (2007) Surf Coat Technol 201:5789

    Article  Google Scholar 

  6. Yip J, Chan K, Sin KM, Lau KS (2002) J Mater Process Tech 123:5

    Article  Google Scholar 

  7. De Geyter N, Morent R, Leys C (2008) Nucl Instrum Meth B 266:3086

    Article  ADS  Google Scholar 

  8. Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2007) Surf Coat Technol 201:7847

    Article  Google Scholar 

  9. Nakamatsu J, Delgado-Aparicio LF, Da Silva R, Soberon F (1999) J Adhes Sci Technol 13:753

    Article  Google Scholar 

  10. Ferreira BMP, Pinheiro LMP, Nascente PAP, Ferreira MJ, Duek EAR (2009) Mat Sci Eng C-Bio S 29:806

    Article  Google Scholar 

  11. Inagaki N, Narushima K, Tsutsui Y, Ohyama Y (2002) J Adhes Sci Technol 16:1041

    Article  Google Scholar 

  12. Khorasani MT, Mirzadeh H, Irani S (2008) Radiat Phys chem 77:280

    Article  ADS  Google Scholar 

  13. Yang J, Bei JZ, Wang SG (2002) Biomaterials 23:2607

    Google Scholar 

  14. Yang J, Shi GX, Bei JZ, Wang SG, Cao YL, Shang QX, Yang GG, Wang WJ (2002) J Biomed Mater Res 62:438

    Article  Google Scholar 

  15. Borcia G, Brown NMD (2007) J Phys D Appl Phys 40:1927

    Article  ADS  Google Scholar 

  16. Heyse P, Dams R, Paulussen S, Houthofd K, Janssen K, Jacobs PA, Sels BF (2007) Plasma Process Polym 4:145

    Article  Google Scholar 

  17. Kasih TP, Kuroda SI, Kubota H (2007) Chem Vap Depos 13:169

    Article  Google Scholar 

  18. Massines F, Mayoux C, Messaoudi R, Rabehi A, Segur P (1992) In proceedings of the tenth international conference on gas discharges and their applications 730

  19. Morent R, De Geyter N, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E (2008) Eur Phys J-Appl Phys 43:289

    Article  ADS  Google Scholar 

  20. De Geyter N, Morent R, Leys C, Gengembre L, Payen E, Van Vlierberghe S, Schacht E (2008) Surf Coat Technol 202:3000

    Article  Google Scholar 

  21. Morent R, De Geyter N, Axisa F, De Smet N, Gengembre L, De Leersnyder E, Leys C, Vanfleteren J, Rymarczyk-Machal M, Schacht E, Payen E (2007) J Phys D Appl Phys 40:7392

    Article  ADS  Google Scholar 

  22. Borcia G, Anderson CA, Brown NMD (2004) Appl Surf Sci 225:186

    Article  ADS  Google Scholar 

  23. Borcia G, Anderson CA, Brown NMD (2005) Plasma Sources Sci T 14:259

    Article  ADS  Google Scholar 

  24. Kogelschatz U, Eliasson B, Egli W (1997) J Phys IV 7:47

    Article  Google Scholar 

  25. Kogelschatz U (2003) Plasma Chem Plasma P 23:1

    Article  Google Scholar 

  26. Pietsch GJ (2001) Contrib Plasm Phys 41:620

    Article  ADS  Google Scholar 

  27. Wagner HE, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) Vacuum 71:417

    Article  Google Scholar 

  28. Kanazawa S, Kogoma M, Moriwaki T, Okazaki S (1988) J Phys D Appl Phys 21:838

    Article  ADS  Google Scholar 

  29. Massines F, Gouda G (1998) J Phys D Appl Phys 31:3411

    Article  ADS  Google Scholar 

  30. Massines F, Rabehi A, Decomps P, Gadri RB, Segur P, Mayoux C (1998) J Appl Phys 83:2950

    Article  ADS  Google Scholar 

  31. Massines F, Segur P, Gherardi N, Khamphan C, Ricard A (2003) Surf Coat Technol 174:8

    Article  Google Scholar 

  32. Trunec D, Brablec A, Stastny F (1998) Contrib Plasm Phys 38:435

    Article  ADS  Google Scholar 

  33. Trunec D, Navratil Z, Stahel P, Zajickova L, Bursikova V (2004) J Phys D Appl Phys 37:2112

    Article  ADS  Google Scholar 

  34. Nozaki T, Unno Y, Miyazaki Y, Okazaki K (2001) In proceedings of 15th international symposium on plasma chemistry (ISPC-15) 77

  35. Massines F, Gherardi N, Fornelli A, Martin S (2005) Surf Coat Technol 200:1855

    Article  Google Scholar 

  36. Moravej M, Yang X, Nowling GR, Chang JP, Hicks RF, Babayan SE (2004) J Appl Phys 96:7011

    Article  ADS  Google Scholar 

  37. Papoular R (1965) Electrical phenomena in gases. Iliffe Books Ltd, London

    Google Scholar 

  38. Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2007) Text Res J 77:471

    Article  Google Scholar 

  39. Hirotsu T, Nakayama K, Tsujisaka T, Mas A, Schue F (2002) Polym Eng Sci 42:299

    Article  Google Scholar 

  40. Paynter RW (2000) Surf Interface Anal 29:56

    Article  Google Scholar 

  41. Sharma R, Holcomb E, Trigwell S, Mazumder M (2007) J Electrostat 65:269

    Article  Google Scholar 

  42. Wilson DJ, Williams RL, Pond RC (2001) Surf Interface Anal 31:397

    Article  Google Scholar 

  43. Massines F, Gouda G, Gherardi N, Duran M, Croquesel E (2001) Plasmas Polym 6:35

    Article  Google Scholar 

  44. Dorai R, Kushner MJ (2003) J Phys D Appl Phys 36:666

    Article  ADS  Google Scholar 

  45. Tatoulian M, Arefi-Khonsari F, Mabillerouger I, Amouroux J, Gheorgiu M, Bouchier D (1995) J Adhes Sci Technol 9:923

    Article  Google Scholar 

  46. Ricard A, Decomps P, Massines F (1999) Surf Coat Technol 112:1

    Article  Google Scholar 

  47. Banik I, Kim KS, Yun YI, Kim DH, Ryu CM, Park CS, Sur GS, Park CE (2003) Polymer 44:1163

    Article  Google Scholar 

  48. Yun YI, Kim KS, Uhm SJ, Khatua BB, Cho K, Kim JK, Park CE (2004) J Adhes Sci Technol 18:1279

    Article  Google Scholar 

Download references

Acknowledgments

This research was part of the Interuniversity Attraction Poles (IAP) Phase VI-Contract P6/08 (Belgian Science Policy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Morent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morent, R., De Geyter, N., Trentesaux, M. et al. Influence of Discharge Atmosphere on the Ageing Behaviour of Plasma-Treated Polylactic Acid. Plasma Chem Plasma Process 30, 525–536 (2010). https://doi.org/10.1007/s11090-010-9233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9233-8

Keywords

Navigation