Skip to main content
Log in

Film Chemistry Control and Growth Kinetics of Pulsed Plasma-Polymerized Aniline

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The polymerization of aniline under continuous and pulsed RF-plasma conditions is studied using the same plasma reactor. The effects of input power, on and off-times, frequency and duty cycle variations on the growth kinetics and on the chemical structure of the obtained layers are examined. The chemical structure of the films is characterized using Fourier Transform Infra-Red, X-ray photoelectron and UltraViolet–Visible spectroscopies. The thickness of the films is determined by profilometry. The results show a strong dependence of film chemistry and deposition rates on the discharge power and on-time. The film deposited by pulsed plasma grows mainly during the plasma-on period. Furthermore, this work shows that the retention of aromatic rings can be evaluated by Fourier transform infrared analysis whereas oxidation degree of plasma polyaniline can be determined by X-ray photoelectron and UV–Vis spectroscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rao PS, Subrahmanya S, Sathyanarayana DN (2002) Synth Met 128(3):311–316

    Article  Google Scholar 

  2. Liao C, Gu M (2002) Thin Solid Films 408(1–2):37–42

    Article  ADS  Google Scholar 

  3. Kobayashi S, Ritter H, Kaplan D (2006) Enzyme-catalyzed synthesis of polymers. Springer, Berlin, pp 69–94

    Book  Google Scholar 

  4. Kim Y, Fukai S, Kobayashi N (2001) Synth Met 119(1–3):337–338

    Article  Google Scholar 

  5. Yasuda H (1985) Plasma polymerization. Academic Press, New York, p 432

    Google Scholar 

  6. Han LM, Timmons RB, Bogdal D, Pielichowski IJ (1998) Chem Mater 10(5):1422–1429

    Article  Google Scholar 

  7. Mackie NM, Castner DG, Fisher ER (1998) Langmuir 14(5):1227–1235

    Article  Google Scholar 

  8. Van Os MT, Menges B, Foerch R, Vancso GJ, Knoll W (1999) Chem Mater 11(11):32257

    Google Scholar 

  9. Zhang J, Feng X, Xie H, Shi Y, Pu T, Guo Y (2003) Thin Solid Films 435(1–2):108–115

    Article  ADS  Google Scholar 

  10. Choukourov A, Biederman H, Slavinska D, Trchova M, Hollander A (2003) Surf Coat Technol 174–175:863–866

    Article  Google Scholar 

  11. Ryan ME, Hynes AM, Badyal JPS (1996) Chem Mater 8:37

    Article  Google Scholar 

  12. Mérian T, Debarnot D, Rouessac V, Poncin-Epaillard F (2010) Talanta 81:602–608

    Article  Google Scholar 

  13. Bhat NV, Joshi NV (1994) Plasma Chem Plasma Process 14(2):151–161

    Article  Google Scholar 

  14. Cruz GJ, Morales J, Castillo-Ortega MM, Olayo R (1997) Synth Met 88(3):213–218

    Article  Google Scholar 

  15. Drachev AI, Demidova EN, Gil’man AB (2008) High Energy Chem 42(1):64–68

    Article  Google Scholar 

  16. Gil’man A, Drachev A (2006) High Energy Chem 40(2):70–78

    Article  Google Scholar 

  17. Gong X, Dai LD, Mau AWH, Griesser HJ (1998) J Polym Sci Part A Polym Chem 36(4):633–643

    Article  ADS  Google Scholar 

  18. Hernandez R, Diaz AF, Waltman R, Bargon J (1984) J Phys Chem 88(15):3333–3337

    Article  Google Scholar 

  19. Mathai CJ, Saravanan S, Anantharaman MR, Venkitachalam S, Jayalekshmi S (2002) J Phys D Appl Phys 35(17):2206–2210

    Article  ADS  Google Scholar 

  20. Morales J, Olayo MG, Cruz GJ, Castillo-Ortega MM, Olayo R (2000) J Polym Sci Part B Polym Phys 38(24):3247–3255

    Article  ADS  Google Scholar 

  21. Morales J, Olayo MG, Cruz GJ, Olayo R (2002) J Polym Sci Part B Polym Phys 40(17):1850–1856

    Article  ADS  Google Scholar 

  22. Nastase C, Mihaiescu D, Nastase F, Moldovan A, Staman I (2004) Synth Met 147(1–3):133–138

    Article  Google Scholar 

  23. Nastase C, Nastase F, Dumitru A, Ionescu M, Staman I (2005) Compos Part A Appl Sci Manufact 36(4):481–485

    Article  Google Scholar 

  24. Olayo MG, Morales J, Cruz GJ, Olayo R, Ordonez E, Barocio SR (2001) J Polym Sci Part B Polym Phys 39(1):175–183

    Article  ADS  Google Scholar 

  25. Olayo MG, Cruz GJ, Ordonez E, Morales J, Olayo R (2004) Polymer 45(10):3565–3575

    Article  Google Scholar 

  26. Olayo MG, Cruz GJ, Ordonez E, Morales J, Olayo R (2006) J Appl Polym Sci 102(5):4682–4689

    Article  Google Scholar 

  27. Paterno LG, Manolache S, Denes F (2002) Synth Met 130(1):85–97

    Article  Google Scholar 

  28. Sajeev US, Mathai CJ, Saravanan S, Ashokan RR, Venkatachalam S, Anantharaman MR (2006) Bull Mater Sci 29(2):159–163

    Article  Google Scholar 

  29. Saravanan S, Mathai JC, Anantharaman MR, Venkatachalam S, Avasthi DK, Singh F (2004) New J Phys 6:64–76

    Article  Google Scholar 

  30. Saravanan S, Mathai JC, Anantharaman MR, Venkatachalam S, Avasthi DK, Singh F (2005) Synth Met 155(2):311–315

    Article  Google Scholar 

  31. Takeda S (1999) Thin Solid Films 343–344:313–316

    Article  Google Scholar 

  32. Tong ZS, Wu MZ, Pu TS, Zhou F, Liu HZ (1995) Synth Met 68(2):125–131

    Article  Google Scholar 

  33. Wang J, Neoh KG, Zhao L, Kang ET (2002) J Colloid Interface Sci 251(1):214–224

    Article  Google Scholar 

  34. Shepsis LV, Pedrow PD, Mahalingam R, Osman MA (2001) Thin Solid Films 385(1–2):11–21

    Article  ADS  Google Scholar 

  35. Tamirisa PA, Liddell KC, Pedrow PD, Osman MA (2004) J Appl Polym Sci 93(3):1317–1325

    Article  Google Scholar 

  36. Biederman H (2004) Plasma polymer films. Imperial College Press, London, p 386

    Book  Google Scholar 

  37. Gong X, Dai L, Mau AWH, Griesser HJ (1998) J Polym Sci Part A Polym Chem 36(4):633–643

    Article  ADS  Google Scholar 

  38. Gengenbach TR, Chatelier RC, Griesser HJ (1999) Plasmas Polym 4(4):283–307

    Article  Google Scholar 

  39. Chen Y, Kang ET, Neoh KG, Lim SL, Ma ZH, Tan KL (2001) Colloid Polym Sci 279:73–76

    Article  Google Scholar 

  40. Albuquerque JE, Mattoso LHC, Balogh DT, Faria RM, Masters JG, MacDiarmid AG (2000) Synth Met 113(1–2):19–22

    Article  Google Scholar 

  41. Wallace G (2003) Conductive electroactive polymers-intelligent materials systems. CRC Press, Boca Raton, p 237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Debarnot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debarnot, D., Mérian, T. & Poncin-Epaillard, F. Film Chemistry Control and Growth Kinetics of Pulsed Plasma-Polymerized Aniline. Plasma Chem Plasma Process 31, 217–231 (2011). https://doi.org/10.1007/s11090-010-9271-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9271-2

Keywords

Navigation