Skip to main content
Log in

Structure–Property Relationship of Thin Plasma Deposited Poly(allyl alcohol) Films

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Poly(allyl alcohol) films with a thickness of about 150 nm were deposited by pulse plasma polymerization onto different substrates (inorganic and organic). The structure/property relationships of these samples were studied in dependence on the duty cycle (DC) of the plasma by a broad combination of different techniques and probes. For the first time volume sensitive methods (FTIR and dielectric spectroscopy) are combined with surface analytics by employing XPS for that system. FTIR spectroscopy gives qualitatively the same dependence of the concentration of the OH groups on DC like XPS. The observed differences are discussed considering the different analytical depths of both the methods. The dielectric measurements show that the plasma deposited films are not thermally stable but undergo a post plasma chemical reaction during heating. The results obtained by dielectric spectroscopy are discussed in detail with the data from FTIR and XPS measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Oh SJ, Kinney DR, Wang W, Rinaldi PL (2002) Macromolecules 35:2602

    Article  ADS  Google Scholar 

  2. Guo SH (2000) In specialty monomers and polymers. In: Havelka KO, McCormick CL (eds) ACS symposium series 755, American Chemical Society, Washington, DC, p 147

  3. Inoue S, Kumagai T, Tamezawa H, Aota H, Matsumoto A, Yokozama K, Matoba Y, Shibano M (2011) J Polym Sci A Polymer Chem 49:156

    Article  ADS  Google Scholar 

  4. Denaro AR, Owens PA, Crawshaw A (1970) Eur Pol J 6:487

    Article  Google Scholar 

  5. Fally F, Virlet I, Riga J, Verbist JJ (1996) J Appl Polym Sci 59:1569

    Article  Google Scholar 

  6. Yoshimura K, Hozumi K, Tatsuta T, Sawai M, Tsuji O (1996) J Appl Pol Sci 59:1033

    Article  Google Scholar 

  7. O’Toole L, Short RD (1997) J Chem Soc Faraday Trans 93:1141

    Article  Google Scholar 

  8. Rinsch CL, Chen X, Panchalingam V, Eberhart RC, Wang J-H, Timmons RB (1996) Langmuir 12:2995

    Article  Google Scholar 

  9. Gombotz WR, Hoffman AS (1988) J Appl Pol Sci Symp 42:285

    Google Scholar 

  10. Ameen AP, Short RD, Ward RJ (1994) Polymer 35:4382

    Article  Google Scholar 

  11. Gancarz I, Bryjak J, Bryjak M, Pozniak G, Tylus W (2003) Eur Pol J 39:1615

    Article  Google Scholar 

  12. Mix R, Falkenhagen J, Schulze R-D, Gerstung V, Friedrich JF (2009) Polymer surface modification edited by Mittal KL 5:317

  13. Oran SU, Swaraj S, Friedrich JF, Unger WES (2005) Plasma Processes Polym 2:563

    Article  Google Scholar 

  14. Friedrich JF, Kühn G, Mix R, Unger W (2004) Plasma Processes Polym 1:28

    Article  Google Scholar 

  15. Candan S, Turk DC (2002) J Chem 26:783

    Google Scholar 

  16. Bradley AP, Hammes JP (1963) J Electrochem Soc 110:15

    Article  Google Scholar 

  17. Biederman H, Slavinska D (2000) Surf Coat Technol 125:371

    Article  Google Scholar 

  18. Kumar DS (2000) J Appl Polym Sci 75:1176

    Article  Google Scholar 

  19. Stundzia V, Biederman H, Slavinsk D, Nedbal J, Hlidek P, Poskus A, Mackus PK, Howson RP (2000) J Phys D Appl Phys 33:719

    Article  ADS  Google Scholar 

  20. Tibbitt JM, Bell AT, Shen M (1976) J Macromol Scl-Chem A10:519

    Article  Google Scholar 

  21. Yasuda H, Gazicki M (1982) Biomaterials. 3 April

  22. Fahmy A, Mix R, Schönhals A, Friedrich JF (2011) Plasma Process Polym 8:147

    Google Scholar 

  23. Chilkoti A, Ratner BD (1996) Surface characterization of advanced polymers, edited by Sabbattini L, Zambonin PG 221

  24. Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. In: Schönhals A (ed) Springer, Berlin, p 225

  25. Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. In: Kremer F, Schönhals A (eds) Springer, Berlin, p 35

  26. Labahn L, Mix R, Schönhals A (2009) Phys Rev 79:011801

    Article  ADS  Google Scholar 

  27. Strunskus T, Zaporojtchenko V, Behnke K, von Bechtolsheim C, Faupel F (2000) Advan Eng Mat 2:489

    Article  Google Scholar 

  28. Chilkoti A, Ratner BD, Briggs D (1991) Chem Mater 3:51

    Article  Google Scholar 

  29. Watkins L, Bismarck A, Lee AF, Wilson D, Wilson K (2006) Appl Surf Sci 252:8203

    Article  ADS  Google Scholar 

  30. Swaraj S, Oran U, Lippitz A, Friedrich JF, Unger WES (2007) Plasma Processes Polym 4:784

    Article  Google Scholar 

  31. Runt JP, Fitzgerald JJ (eds) (1997) Dielectric spectroscopy of polymeric materials. ACS books, Washington DC

    Google Scholar 

  32. Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. In: Hartmann L, Fukao K, Kremer F (eds) Springer, Berlin, p 433

  33. Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. In: Schönhals A, Kremer F (eds) Springer, Berlin, p 59

  34. De La Rosa A, Heux L, Cavaille JY (2000) Polymer 41:7547

    Article  Google Scholar 

  35. Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. In: Schönhals A, Kremer F (eds) Springer, Berlin, p 1

  36. De La Rosaa A, Heuxa L, Cavaille JY (2001) Polymer 42:5371

    Article  Google Scholar 

  37. Vogel HZ (1921) Phys 22:645

    Google Scholar 

  38. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  Google Scholar 

  39. Tammann G, Hesse GZ (1926) Anorg Alleg Chem 156:245

    Article  Google Scholar 

Download references

Acknowledgments

A. Fahmy gratefully acknowledges the Egyptian Government’s Ministry of Higher Education, Cultural Affairs & Missions Sector (CAMS) for their support and funding. G. Hidde, D. Neubert and F. Milczewski is thanked for technical assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fahmy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahmy, A., Mix, R., Schönhals, A. et al. Structure–Property Relationship of Thin Plasma Deposited Poly(allyl alcohol) Films. Plasma Chem Plasma Process 31, 477–498 (2011). https://doi.org/10.1007/s11090-011-9297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9297-0

Keywords

Navigation