Skip to main content
Log in

Surface Analysis of Titanium Cleaning and Activation Processes: Non-thermal Plasma Versus Other Techniques

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A medium pressure (5 kPa) dielectric barrier discharge operating in different atmospheres (air and argon) is used to develop a fast and easy way to remove adsorbed carbon contamination. Chemical and physical changes at the sample surface after plasma treatment are studied, making use of contact angle measurements, X-ray photoelectron spectroscopy analysis and atomic force microscopy measurements. The obtained results are compared with other chemical and thermal treatments typically used. This comparison shows that plasma treatment at medium pressure is able to remove up to 20 % more of the adsorbed carbon compared to the classical cleaning methods, while at the same time being less aggressive, leaving the sub-surface chemistry unchanged. Moreover, the analysis techniques give a fundamental insight in the reactions processes at the titanium surface when exposed to a medium pressure plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Morra M, Cassinelli C (1997) Evaluation of surface contamination of titanium dental implants by LV-SEM: comparison with XPS measurements. Surf Interface Anal 25(13):983–988. doi:10.1002/(sici)1096-9918(199712)25:13<983:aid-sia345>3.0.co;2-x

    Article  CAS  Google Scholar 

  2. Castilho GA, Martins MD, Macedo WA (2006) Surface characterization of titanium based dental implants. Braz J Phys 36(3B):1004–1008

    Article  CAS  Google Scholar 

  3. Aronsson BO, Lausmaa J, Kasemo B (1997) Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. J Biomed Mater Res 35(1):49–73

    Article  CAS  Google Scholar 

  4. Kasemo B, Lausmaa J (1988) Biomaterial and implant surfaces: on the role of cleanliness, contamination, and preparation procedures. J Biomed Mater Res 22(S13):145–158

    Article  CAS  Google Scholar 

  5. Rupp F, Scheideler L, Olshanska N, De Wild M, Wieland M, Geis-Gerstorfer J (2006) Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res, Part A 76(2):323–334

    Article  CAS  Google Scholar 

  6. Brunette DM et al (2001) Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. Springer, Berlin

    Book  Google Scholar 

  7. Lausmaa J, Kasemo B, Mattsson H (1990) Surface spectroscopic characterization of titanium implant materials. Appl Surf Sci 44(2):133–146. doi:10.1016/0169-4332(90)90100-E

    Article  CAS  Google Scholar 

  8. Ingram AH (1976) Solvent-based activator for ensuring paint adhesion to titanium and stainless steel. Google Patents

  9. Walker P (1991) Organosilanes as adhesion promoters. J Adhes Sci Technol 5(4):279–305

    Article  CAS  Google Scholar 

  10. Retallick W, Brady M, Humphrey D (1998) A phosphoric acid surface treatment for improved oxidation resistance of gamma titanium aluminides. Intermetallics 6(4):335–337

    Article  CAS  Google Scholar 

  11. Viornery C, Chevolot Y, Léonard D, Aronsson B-O, Péchy P, Mathieu HJ, Descouts P, Grätzel M (2002) Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir 18(7):2582–2589

    Article  CAS  Google Scholar 

  12. Farnsworth HE, Schlier RE, George TH, Burger RM (1958) Application of the Ion bombardment cleaning method to titanium, germanium, silicon, and nickel as determined by low-energy electron diffraction. J Appl Phys 29(8):1150–1161. doi:10.1063/1.1723393

    Article  CAS  Google Scholar 

  13. Mattox DM (1973) Fundamentals of ion plating. J Vac Sci Technol 10(1):47–52

    Article  CAS  Google Scholar 

  14. Bogaerts A, Neyts E, Gijbels R, van der Mullen J (2002) Gas discharge plasmas and their applications. Spectrochim Acta, Part B 57(4):609–658

    Article  Google Scholar 

  15. Petasch W, Kegel B, Schmid H, Lendenmann K, Keller H (1997) Low-pressure plasma cleaning: a process for precision cleaning applications. Surf Coat Technol 97(1):176–181

    Article  CAS  Google Scholar 

  16. Larsson Wexell C, Thomsen P, Aronsson B-O, Tengvall P, Rodahl M, Lausmaa J, Kasemo B, Ericson L (2013) Bone response to surface-modified titanium implants: studies on the early tissue response to implants with different surface characteristics. Int J Biomater 2013:412482. doi:10.1155/2013/412482

  17. Dubruel P, Vanderleyden E, Bergada M, De Paepe I, Chen H, Kuypers S, Luyten J, Schrooten J, Van Hoorebeke L, Schacht E (2006) Comparative study of silanisation reactions for the biofunctionalisation of Ti-surfaces. Surf Sci 600(12):2562–2571

    Article  CAS  Google Scholar 

  18. Takeuchi M, Abe Y, Yoshida Y, Nakayama Y, Okazaki M, Akagawa Y (2003) Acid pretreatment of titanium implants. Biomaterials 24(10):1821–1827

    Article  CAS  Google Scholar 

  19. Yetim AF (2010) Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surf Coat Technol 205(6):1757–1763. doi:10.1016/j.surfcoat.2010.08.079

    Article  CAS  Google Scholar 

  20. Wang CT, Gao N, Gee MG, Wood RJK, Langdon TG (2013) Processing of an ultrafine-grained titanium by high-pressure torsion: an evaluation of the wear properties with and without a TiN coating. J Mech Behav Biomed Mater 17:166–175. doi:10.1016/j.jmbbm.2012.08.018

    Article  CAS  Google Scholar 

  21. Fracassi F, d’Agostino R, Lamendola R, Filippo A, Rapisarda C, Vasquez P (1996) Plasma assisted dry etching of cobalt silicide for microelectronics applications. J Electrochem Soc 143(2):701–707

    Article  CAS  Google Scholar 

  22. Balachova O, Alves M, Swart J, Braga E, Cescato L (2000) CF4 plasma etching of materials used in microelectronics manufacturing. Microelectron J 31(3):213–215

    Article  CAS  Google Scholar 

  23. Lin C-C, Cheng H-C, Huang C-F, Lin C-T, Lee S-Y, Chen C-S, Ou K-L (2005) Enhancement of biocompatibility on bioactive titanium surface by low-temperature plasma treatment. Jpn J Appl Phys 44:8590

    Article  CAS  Google Scholar 

  24. Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P (2009) Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules 10(9):2351–2378

    Article  CAS  Google Scholar 

  25. Wu S, Liu X, Yeung A, Yeung KW, Kao R, Wu G, Hu T, Xu Z, Chu PK (2011) Plasma-modified biomaterials for self-antimicrobial applications. ACS Appl Mater Interfaces 3(8):2851–2860

    Article  CAS  Google Scholar 

  26. De Geyter N, Morent R, Desmet T, Trentesaux M, Gengembre L, Dubruel P, Leys C, Payen E (2010) Plasma modification of polylactic acid in a medium pressure DBD. Surf Coat Technol 204(20):3272–3279

    Article  Google Scholar 

  27. Morent R, De Geyter N, Desmet T, Dubruel P, Leys C (2011) Plasma surface modification of biodegradable polymers: a review. Plasma Processes Polym 8(3):171–190

    Article  CAS  Google Scholar 

  28. Balazs DJ, Hossain MM, Brombacher E, Fortunato G, Körner E, Hegemann D (2007) Multi-functional nanocomposite plasma coatings—enabling new applications in biomaterials. Plasma Processes Polym 4(S1):S380–S385

    Article  Google Scholar 

  29. Da Ponte G, Sardella E, Fanelli F, d’Agostino R, Favia P (2011) Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications. Eur Phys J Appl Phys 56(2):7

    Article  Google Scholar 

  30. Kominiak G, Mattox D (1977) Reactive plasma cleaning of metals. Thin Solid Films 40:141–148

    Article  CAS  Google Scholar 

  31. Green Jr RE, Jones RH, Peters LJ, Withol PJ (1991) Dental implant system. Google Patents

  32. Baker MA (1980) Plasma cleaning and the removal of carbon from metal surfaces. Thin Solid Films 69(3):359–368. doi:10.1016/0040-6090(80)90588-X

    Article  CAS  Google Scholar 

  33. Swart K, Keller J, Wightman J, Draughn R, Stanford C, Michaels C (1992) Short-term plasma-cleaning treatments enhance in vitro osteoblast attachment to titanium. J Oral Implantol 18(2):130

    CAS  Google Scholar 

  34. Carlsson LV, Alberktsson T, Berman C (1989) Bone response to plasma-cleaned titanium implants. Int J Oral Maxillofac Implants 4(3):199

    CAS  Google Scholar 

  35. Panousis E, Clément F, Loiseau J-F, Spyrou N, Held B, Larrieu J, Lecoq E, Guimon C (2007) Titanium alloy surface treatment using an atmospheric plasma jet in nitrogen pulsed discharge conditions. Surf Coat Technol 201(16):7292–7302

    Article  CAS  Google Scholar 

  36. Vanderleyden E, Dubruel P, Schacht E (2010) bio-interactieve polymeren als deklagen voor poreuze botimplantaten. Ghent, Gent

    Google Scholar 

  37. Wagner HE, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) The barrier discharge: basic properties and applications to surface treatment. Vacuum 71(3):417–436. doi:10.1016/S0042-207X(02)00765-0

    Article  CAS  Google Scholar 

  38. McCafferty E, Wightman J (1999) An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium. Appl Surf Sci 143(1):92–100

    Article  CAS  Google Scholar 

  39. Rossetti FF, Reviakine I, Textor M (2003) Characterization of titanium oxide films prepared by the template-stripping method. Langmuir 19(24):10116–10123

    Article  CAS  Google Scholar 

  40. Fu Y, Du H, Zhang S, Huang W (2005) XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Mater Sci Eng A 403(1):25–31

    Article  Google Scholar 

  41. Lu G, Bernasek SL, Schwartz J (2000) Oxidation of a polycrystalline titanium surface by oxygen and water. Surf Sci 458(1):80–90

    Article  CAS  Google Scholar 

  42. Girolami GS, Jensen JA, Pollina DM, Allocca CM, Kaloyeros AE, Williams WS (1987) Organometallic route to the chemical vapor deposition of titanium carbide films at exceptionally low temperatures. J Am Chem Soc 109(5):1579–1580

    Article  CAS  Google Scholar 

  43. Briggs D (1998) Surface analysis of polymers by XPS and static SIMS. Cambridge University Press, Cambridge

    Book  Google Scholar 

  44. Park JH, Olivares-Navarrete R, Baier RE, Meyer AE, Tannenbaum R, Boyan BD, Schwartz Z (2012) Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomater 8(5):1966–1975

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement n. 279022. R. Morent acknowledges the support of the Research Foundation Flanders (FWO) for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Cools.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cools, P., De Geyter, N., Vanderleyden, E. et al. Surface Analysis of Titanium Cleaning and Activation Processes: Non-thermal Plasma Versus Other Techniques. Plasma Chem Plasma Process 34, 917–932 (2014). https://doi.org/10.1007/s11090-014-9552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9552-2

Keywords

Navigation