Skip to main content
Log in

A Study of the Influence of the Surrounding Gas on the Plasma Jet and Coating Quality During Plasma Spraying

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Coating quality is affected by arc and plume instabilities during plasma spraying. In closed chamber plasma spraying, gradual drift is one of the intermediate instabilities, which is mainly due to the electrode erosion. This work focuses on the source of the gradual drift of the plasma jet and the influence on coating quality. The ambient state inside the chamber was controlled by a ventilation system and a vacuum system. The variation in the plasma jet was observed by a particle flux image device based on a CCD camera. The optical spectrum of the plasma plume was measured and analyzed through an optical spectrometer. The results indicated that the addition of hydrogen to plasma gas induced the change in the plasma jet length and width with changing rates depending on the chamber state and the ventilation power. With poor ventilation, the intensity of Hα emission was found to become gradually stronger while Hβ and Hγ were found to become weaker. On closing the chamber and retaining enough ventilation power, it was observed that the ambient gas slowly turned red. Simultaneously, the coating weight and thickness were slightly decreased meanwhile the porosity ratio was obviously increased. The red ambient gas has been proved to be able to acidify the city water with pH value decreased from 7 to 1–3. Without hydrogen, the plasma jet was found to be stable without reddening and variation, but the plasma enthalpy was unfortunately low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Fauchais P (2004) J Phys D Appl Phys 37:R86–R108

    Article  CAS  Google Scholar 

  2. Pfender E (1999) Plasma Chem Plasma Process 19(1):1–31

    Article  CAS  Google Scholar 

  3. Saremi M, Valefi Z, Abaeian N (2013) Surf Coat Technol 221:133–141

    Article  CAS  Google Scholar 

  4. Kim J, Dunn MG, Baran AJ, Wade DP, Tremba EL (2008) J Eng Gas Turb Power 115(3):641–651

    Article  Google Scholar 

  5. Aruna ST, Sanjeeviraja C, Balaji N, Manikandanath NT (2013) Surf Coat Technol 219:131–138

    Article  CAS  Google Scholar 

  6. Grundmeier G, Stratmann M (1999) Appl Surf Sci 141:43–56

    Article  CAS  Google Scholar 

  7. Thirumalaikumarasamy D, Shanmugam K, Balasubramanian V (2014) J Asian Ceram Soc 2(4):403–415

    Article  Google Scholar 

  8. Wei S, Xu B, Wang H, Jin G, Lv H (2007) Surf Coat Technol 201(15):6768–6771

    Article  CAS  Google Scholar 

  9. Shi S, Zheng Q, Fu G, Wang X (2004) Nucl Eng Des 231(1):121–126

    Article  CAS  Google Scholar 

  10. Wu H, Jin Y, Nicoll AR, Barbezat G (1994) Wear 176(1):49–60

    Article  CAS  Google Scholar 

  11. Fleury H, Lee SM, Kim JS, Kim DH, Kim WT, Ahn HS (2002) Wear 253(9–10):1057–1069

    Article  CAS  Google Scholar 

  12. Fauchais P, Vardelle M, Vardelle A, Bianchi L (1996) Ceram Int 22(4):295–303

    Article  CAS  Google Scholar 

  13. Kanta AF, Montavon G, Berndt CC, Planche MP, Coddet C (2011) Expert Syst Appl 38(1):260–271

    Article  Google Scholar 

  14. Guessasma S, Montavon G, Gougeon P, Coddet C (2003) Mater Des 24(7):497–502

    Article  CAS  Google Scholar 

  15. Kang J, Xu B, Wang H, Wang C (2013) Phys Procedia 50:169–176

    Article  CAS  Google Scholar 

  16. Fauchais P, Vardelle A, Dussoubs B (2001) J Therm Spray Technol 10(1):44–66

    Article  CAS  Google Scholar 

  17. Kriba I, Djebaili A (2009) Appl Surf Sci 255(10):5637–5640

    Article  CAS  Google Scholar 

  18. Coudert JF, Planche MP, Fauchais P (1996) Plasma Chem Plasma Process 16(1):211s–227s

    CAS  Google Scholar 

  19. Bisson JF, Gauthier B, Moreau C (2003) J Therm Spray Technol 12(1):38–43

    Article  CAS  Google Scholar 

  20. Heberlei JV (2002) High Temp Mater Proc 6(3):321–338

    Google Scholar 

  21. Szente RN, Munz RJ, Drouet MG (1992) Plasma Chem Plasma Process 12(3):327–343

    Article  CAS  Google Scholar 

  22. Rigot D, Delluc G, Pateyron B, Coudert JF, Fauchais P, Wigren J (2003) High Temp Mater Proc 7(2):175–185

    Google Scholar 

  23. Xiong H, Zheng L, Sampath S, Williamson RL, Fincke JR (2004) Int J Heat Mass Transf 47(24):5189–5200

    Article  CAS  Google Scholar 

  24. Liu T, Planche MP, Kanta AF, Deng S, Montavon G, Deng K, Ren ZM (2013) Plasma Chem Plasma Process 33(5):1025–1041

    Article  Google Scholar 

  25. Cheng K, Chen X (2004) Int J Heat Mass Transf 47(23):5139–5148

    Article  CAS  Google Scholar 

  26. Williamson RL, Fincke JR, Crawford DM, Snyder SC, Swank WD, Haggard DC (2003) Int J Heat Mass Transf 46(22):4215–4228

    Article  CAS  Google Scholar 

  27. Spores R, Pfender E (1989) Surf Coat Technol 37(3):251–270

    Article  Google Scholar 

  28. Chen C, Wei T, Collins LR, Phillips J (1999) J Phys D Appl Phys 32:688–698

    Article  CAS  Google Scholar 

  29. Garcia MC, Rodero A, Sola A, Gamero A (2000) Spectrochim Acta B 55:1733–1745

    Article  Google Scholar 

  30. Mills RL, Ray P (2002) New J Phys 4:22.1–22.17

    Google Scholar 

  31. Radovanov SB, Olthoff JK, Van Brunt RJ, Djurovic S (1995) J Appl Phys 78(2):746–757

    Article  CAS  Google Scholar 

  32. Mills RL, Ray P, Dong J, Nansteel M, Dhandapani B, He J (2003) Vib Spectrosc 31(2):195–213

    Article  CAS  Google Scholar 

  33. Kühn G, Kock M (2006) J Phys D Appl Phys 39:2401–2414

    Article  Google Scholar 

  34. Fauchais P, Coudert JF, Vardelle M, Vardelle A, Denoirjean A (1992) J Therm Spray Technol 1(2):117–128

    Article  CAS  Google Scholar 

  35. Zierhut J, Pellkofer W, Sagel A, Haug T, Landes KD (2001) Thermal spray: new surfaces for a new millennium. In: Berndt CC, Khor KA, Lugscheider EF (eds) ASM International, Materials Park, pp 787–790

  36. Liu T, Arnold J (2016) Surf Coat Technol 286:80–94

    Article  CAS  Google Scholar 

  37. Jin D, Yang Z, Tang P, Xiao K, Dai J (2009) Vacuum 83:451–453

    Article  Google Scholar 

  38. Wünderlich D, Dietrich S, Fantz U (2009) J Quant Spectrosc Radiat Transf 110:62–71

    Article  Google Scholar 

  39. Database of the National Institute of Standards and Technology (NIST): http://www.nist.gov/pml/data/asd.cfm

  40. Bogaerts A, Gijbels R (2002) Phys Rev E 65(5):056402

    Article  Google Scholar 

  41. Argon emission lights (also from NIST): http://astro.u-strasbg.fr/~koppen/discharge/argon.txt

  42. Fukumoto M, Yamaguchi T, Yamada M, Yasui T (2007) J Therm Spray Technol 16(5–6):905–912

    Article  CAS  Google Scholar 

  43. Kuraica M, Konjevic N (1994) Phys Scr 50:487–492

    Article  CAS  Google Scholar 

  44. Mendez I, Tanarro I, Herrero VJ (2010) Phys Chem Chem Phys 12:4239–4245

    Article  CAS  Google Scholar 

  45. Voitsenya V, Naidenkova D, Masuzaki S, Kubota Y, Sagara A, Yamazaki K (2006) J Plasma Fusion Res Ser 7:114–117

    Google Scholar 

Download references

Acknowledgements

The authors would like to express thanks to Günter Roth and Ina Plock for their technical supports. The authors also would like to acknowledge financial support from DLR/DAAD Research Fellowship Program with No. 50019752 (Deutsche Forschungsanstalt für Luft- und Raumfahrt/Deutscher Akademischer Austausch Dienst).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Liu.

Appendix

Appendix

See Table 6.

Table 6 Hydrogen emission lines with different wavelengths (nm)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Ansar, A. & Arnold, J. A Study of the Influence of the Surrounding Gas on the Plasma Jet and Coating Quality During Plasma Spraying. Plasma Chem Plasma Process 37, 1009–1032 (2017). https://doi.org/10.1007/s11090-017-9795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9795-9

Keywords

Navigation