Skip to main content
Log in

Numerical Simulation of Metal Vapour Behavior in Double Electrodes TIG Welding

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Metal vapour from the weld pool in double electrodes tungsten inert gas welding is taken into account by a unified numerical model including the arc plasma and the weld pool. The thermodynamic properties and transport coefficients of the arc plasma are dependent on both the local temperature and the mass fraction of the metal vapour. A second viscosity approximation is used to describe the diffusion coefficient of the metal vapour in the arc plasma. The temperature and the flow fields of both the arc plasma and the weld pool are calculated together with the metal vapour concentration. The simulated results are presented for the cases of 3 and 9 mm electrode separation, respectively. It is shown that the metal vapour behavior is much different in these two cases. In the case of 3 mm electrode separation, the metal vapour above the mass fraction of 0.2% is concentrated just above the weld pool surface, while in the case of 9 mm electrode separation, the metal vapour is diffused to the most region of the arc plasma for the same range of mass fraction. In addition, the arc plasma temperature as well as the heat flux at the weld pool is constricted by the presence of the metal vapour. The constricted heat flux at the weld pool results in an increase in the temperature of the weld pool about 100 K or less but a slight shrinkage of the weld pool shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kanemaru S, Sasaki T, Sato T, Era T, Tanaka M (2014) Study for TIG-MIG hybrid welding process. Weld World 58:11–18

    Article  CAS  Google Scholar 

  2. Tuěsk J, Suban M (2003) High-productivity multiple-wire submerged-arc welding and cladding with metal-powder addition. J Mater Process Technol 133:207–213

    Article  Google Scholar 

  3. Li KH, Chen JS, Zhang YM (2007) Double-electrode GMAW process and control. Weld J 86:s678–s689

    Google Scholar 

  4. Kobayashi K, Nishimura Y, Lijima T, Ushio M, Tanaka M, Shimamura J, Ueno Y, Yamashita M (2004) Practical application of high efficiency twin-arc TIG welding method for PCLNG storage tank. Weld World 48:35–39

    Article  Google Scholar 

  5. Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2017) Environmental energy efficiency of single wire and tandem gas metal arc welding. Weld World 64:733–743

    Article  Google Scholar 

  6. Leng X, Zhang G, Wu L (2006) The characteristic of twin-electrode TIG coupling arc pressure. J Phys D Appl Phys 39:1120–1126

    Article  CAS  Google Scholar 

  7. Ogino Y, Hirata Y, Nomura K (2011) Numerical analysis of the heat source characteristics of two electrode TIG arc. J Phys D Appl Phys 44:215202–215208

    Article  CAS  Google Scholar 

  8. Schwedersky MB, Gonçalve s Silva RH, Dutra JC, Reisgen U, Willms K (2016) Two-dimensional arc stagnation pressure measurements for the double-electrode GTAW process. Sci Technol Weld Join 21:275–280

    Article  Google Scholar 

  9. Zhang G, Xiong J, Hu Y (2010) Spectroscopic diagnostics of temperatures for a non-axisymmetric coupling arc by monochromatic imaging. Meas Sci Technol 21:105502–105507

    Article  CAS  Google Scholar 

  10. Zhang G, Xiong J, Gao H, Wu L (2012) Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc. J Quant Spectrosc Radiat Transf 113:1938–1945

    Article  CAS  Google Scholar 

  11. Nomura K, Shirai K, Kishi T, Hirata Y (2015) Study on temperature measurement of two-electrode TIG arc plasma. Weld Int 29:493–501

    Article  Google Scholar 

  12. Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy AB, Lowke JJ (2010) Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding. J Phys D Appl Phys 43:434009

    Article  CAS  Google Scholar 

  13. Baeva M (2017) Non-equilibrium modeling of tungsten-inert gas arcs. Plasma Chem Plasma Process 37:341–370

    Article  CAS  Google Scholar 

  14. Ogino Y, Hirata Y, Kawata J, Nomura K (2013) Numerical analysis of arc plasma and weld pool formation by a tandem TIG arc. Weld World 57:411–423

    Google Scholar 

  15. Wang X, Fan D, Huang JK, Huang Y (2014) A unified model of coupled arc plasma and weld pool for double electrodes TIG welding. J Phys D Appl Phys 47:275202

    Article  CAS  Google Scholar 

  16. Schnick M, Füssel U, Hertelet M, Spille-Kohoff A, Murphy AB (2010) Metal vapour causes a central minimum in arc temperature in gas–metal arc welding through increased radiative emission. J Phys D Appl Phys 43:022001

    Article  CAS  Google Scholar 

  17. Murphy AB (2013) Influence of metal vapour on arc temperatures in gas–metal arc welding: convection versus radiation. J Phys D Appl Phys 46:224004

    Article  CAS  Google Scholar 

  18. Park H, Trautmann M, Tanaka K, Tanaka M, Murphy AB (2017) Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel. J Phys D Appl Phys 50:43LT03

    Article  CAS  Google Scholar 

  19. Menart J, Lin L (1999) Numerical study of a free-burning argon arc with copper contamination from the anode. Plasma Chem Plasma Process 19:153–170

    Article  CAS  Google Scholar 

  20. Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen and argon-oxygen plasmas. Plasma Chem Plasma Process 14:451–490

    Article  CAS  Google Scholar 

  21. Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma Process 15:279–307

    Article  CAS  Google Scholar 

  22. Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43:434001

    Article  CAS  Google Scholar 

  23. Menart J, Malik S (2002) Net emission coefficients for argon–iron thermal plasmas. J Phys D Appl Phys 35:867–874

    Article  CAS  Google Scholar 

  24. Cram LE (1985) Statistical evaluation of radiative power losses from thermal plasmas due to spectral lines. J Phys D Appl Phys 18:401–411

    Article  CAS  Google Scholar 

  25. Wang X, Fan D, Huang JK, Huang Y (2015) Numerical simulation of arc plasma and weld pool in double electrodes tungsten inert gas welding. Int J Heat Mass Transf 85:924–934

    Article  CAS  Google Scholar 

  26. Fan D, Huang Z, Huang JK, Wang X, Huang Y (2015) Three-dimensional numerical analysis of interaction between arc and pool by considering the behavior of the metal vapour in tungsten inert gas welding. Acta Phys Sin 64:108102

    Google Scholar 

  27. Lago F, Gonzalez JJ, Freton P, Gleizes A (2004) A numerical modelling of an electric arc and its interaction with the anode: part I The two-dimensional model. J Phys D Appl Phys 37:883–897

    Article  CAS  Google Scholar 

  28. Razafinimanana M, Hamidi LE, Gleizes A, Vacquie S (1995) Experimental study of the influence of anode ablation on the characteristics of an argon transferred arc. Plasma Sources Sci Technol 4:501–510

    Article  CAS  Google Scholar 

  29. Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke JJ (2009) Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J Phys D Appl Phys 42:194006

    Article  CAS  Google Scholar 

  30. Heberlein J, Mentel J, Pfender E (2010) The anode region of electric arcs: a survey. J Phys D Appl Phys 43:023001

    Article  CAS  Google Scholar 

  31. Semenov IL, Krivtsun IV, Reisgen U (2016) Numerical study of the anode boundary layer in atmospheric pressure arc discharges. J Phys D Appl Phys 49:105204

    Article  CAS  Google Scholar 

  32. Sahoo P, Debroy T, McNallan MJ (1988) Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy. Metall Trans B 19:483–491

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. A. B. Murphy of CSIRO Materials Science and Engineering for his providing of mixture plasma properties of Ar–Fe. This work is supported by National Science Foundation of China (51705054) and Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant Nos. KJ1600903 and KJ1709197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Luo, Y., Wu, G. et al. Numerical Simulation of Metal Vapour Behavior in Double Electrodes TIG Welding. Plasma Chem Plasma Process 38, 1095–1114 (2018). https://doi.org/10.1007/s11090-018-9904-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9904-4

Keywords

Navigation