Skip to main content
Log in

Self-Assembled Hydrophobic Honokiol Loaded MPEG-PCL Diblock Copolymer Micelles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Honokiol showed potential application in cancer treatment, but its poor water solubility restricts its clinical application greatly. So, we designed a self-assembled monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelle to load honokiol to overcome its poor water solubility.

Methods

We synthesized MPEG-PCL diblock copolymer that could self-assemble into monodisperse micelles at the particle size of ca.18 nm in water. Honokiol was loaded into MPEG-PCL micelle by direct dissolution method assisted by ultrasound, without any surfactants, organic solvents, and vigorous stirring.

Results

The blank MPEG-PCL micelles (100 mg/mL) did not induce any hemolysis in vitro and showed very low toxicity ex vivo and in vivo. Honokiol could be molecularly incorporated into MPEG-PCL micelles at the drug loading of about 20% by direct dissolution method assisted by ultrasound. After loaded into MPEG-PCL micelles, honokiol maintained its molecular structure and anticancer activity in vitro. Honokiol could be sustained released from MPEG-PCL micelles in vitro. The honokiol loaded MPEG-PCL micelles could be lyophilized without any adjuvant.

Conclusion

The prepared honokiol formulation based on self-assembled MPEG-PCL micelle was stable, safe, effective, easy to produce and scale up, and showed potential clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Teng CM, Chen CC, Ko FN, Lee LG, Huang TF, Chen YP, et al. Two antiplatelet agents from Magnolia officinalis. Thromb Res. 1998;50:757–65.

    Article  Google Scholar 

  2. Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK. The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Eur J Pharmacol. 2003;475:19–27.

    Article  PubMed  CAS  Google Scholar 

  3. Lo YC YC, Teng CM, Chen CF, Chen CC, Hong CY. Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochem Pharmacol. 1994;47:549–53.

    Article  PubMed  Google Scholar 

  4. Liou KT, Lin SM, Huang SS, Chih CL, Tsai SK. Honokiol ameliorates cerebral infarction from ischemia-reperfusion injury in rats. Planta Med. 2003;69:130–4.

    Article  PubMed  CAS  Google Scholar 

  5. Maruyama Y, Kuribara H. Overview of the pharmacological features of honokiol. CNS Drug Rev. 2000;6:35–44.

    CAS  Google Scholar 

  6. Hahm ER, Singh SV. Honokiol causes G0–G1 phase cell cycle arrest in human prostate cancer cells in association with suppression of retinoblastoma protein level/phosphorylation and inhibition of E2F1 transcriptional activity. Mol Cancer Ther. 2007;6:2686–95.

    Article  PubMed  CAS  Google Scholar 

  7. Lee B, Kim CH, Moon SK. Honokiol causes the p21WAF1-mediated G(1)-phase arrest of the cell cycle through inducing p38 mitogen activated protein kinase in vascular smooth muscle cells. FEBS Lett. 2006;580:5177–84.

    Article  PubMed  CAS  Google Scholar 

  8. Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, et al. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem. 2003;278:35501–7.

    Article  PubMed  CAS  Google Scholar 

  9. Battle TE, Arbiser J, Frank DA. The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood. 2005;106:690–7.

    Article  PubMed  CAS  Google Scholar 

  10. Sheu ML, Liu SH, Lan KH. Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth. PLoS ONE. 2007;2:e1096.

    Article  PubMed  Google Scholar 

  11. Wang T, Chen F, Chen Z, Wu YF, Xu XL, Zheng S. Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO. World J Gastroenterol. 2004;10:2205–8.

    PubMed  CAS  Google Scholar 

  12. Ahn KS, Sethi G, Shishodia S, Sung B, Arbiser JL, Aggarwal BB. Honokiol potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through modulation of nuclear factor-KB activation pathway. Mol Cancer Res. 2006;4:621–33.

    Article  PubMed  CAS  Google Scholar 

  13. Ishitsuka K, Hideshima T, Hamasaki M, Raje N, Kumar S, Hideshima H, et al. Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood. 2005;106:1794–800.

    Article  PubMed  CAS  Google Scholar 

  14. Xu D, Lu Q, Hu X. Down-regulation of P-glycoprotein expression in MDR breast cancer cell MCF-7/ADR by honokiol. Cancer Lett. 2006;243:274–80.

    Article  PubMed  CAS  Google Scholar 

  15. Luo H, Zhong Q, Chen LJ, Qi XR, Fu AF, Yang HS. Liposomal honokiol, a promising agent for treatment of cisplatin-resistant human ovarian cancer. J Cancer Res Clin Oncology. 2008;134:937–45.

    Article  CAS  Google Scholar 

  16. Jiang QQ, Fan LY, Yang GL, Guo WH, Hou WL, Chen LJ, et al. Improved therapeutic effectiveness by combining liposomal honokiol with cisplatin in lung cancer model. BMC Cancer. 2008;8:242–9.

    Article  PubMed  Google Scholar 

  17. Hou W, Chen L, Yang G, Zhou H, Jiang Q, Zhong Z. Synergistic antitumor effects of liposomal honokiol combined with adriamycin in breast cancer models. Phytother Res. 2008;22:1125–32.

    Article  PubMed  CAS  Google Scholar 

  18. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotech. 2004;24:1211–7.

    Article  Google Scholar 

  19. Parka JH, Lee S, Kim JH, Park K, Kim K, Kwon IC. Polymeric nanomedicine for cancer therapy. Prog Polym Sci. 2008;33:113–37.

    Article  Google Scholar 

  20. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:167–71.

    Article  Google Scholar 

  21. Service RF. Nanotechnology takes aim at cancer. Science. 2005;310:1132–4.

    Article  PubMed  Google Scholar 

  22. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Rel. 2008;126:187–204.

    Article  CAS  Google Scholar 

  23. Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97–110.

    Article  PubMed  Google Scholar 

  24. Saffie-Sieverb R, Ogden J, Parry-Billings M. Nanotechnology approaches to solving the problems of poorly water-soluble drugs. Drug Discovery World. 2005;Summer:71–76.

    Google Scholar 

  25. Torchilin VP, Lukyanov AN, Gao Z, Sternberg BP. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Nat Acad Sci USA. 2003;100:6039–44.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Z, Feng SS. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)—tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials. 2006;27:4025–33.

    Article  PubMed  CAS  Google Scholar 

  27. Kim SY, Lee YM, Baik DJ, Kang JS. Toxic characteristics of methoxy poly(ethylene glycol)/poly(ε-caprolactone) nanospheres; in vitro and in vivo studies in the normal mice. Biomaterials. 2003;24:55–63.

    Article  PubMed  CAS  Google Scholar 

  28. Hu Y, Zhang L, Cao Y, Ge H, Jiang X, Yang C. Degradation behavior of poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) micelles in aqueous solution. Biomacromolecules. 2004;4:1756–62.

    Article  Google Scholar 

  29. Gou ML, Dai M, Li XY, Wang XH, Gong CY, Xie Y, et al. Preparation and characterization of honokiol nanoparticles. J Mater Sci: Mater Med. 2008;19:2605–8.

    Article  CAS  Google Scholar 

  30. Gou ML, Li XY, Dai M, Gong CY, Wang XH, Xie Y, et al. A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int J Pharm. 2008;359:228–33.

    Article  PubMed  CAS  Google Scholar 

  31. Gou ML, Gong CY, Zheng XL, Wang XH, Guo G, Chen LJ, et al. Polymeric matrix for drug delivery: honokiol loaded PCL-PEG-PCL nanoparticles in PEG-MPEG-PCL thermo-sensitive hydrogel. J Biomed Mater Res Part A. 2009;In press.

  32. Wei XW, Gong CY, Shi S, Fu SZ, Men K, Zeng S, et al. Self-assembled honokiol-loaded micelles based on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) copolymer. Int J Pharm. 2009;369:170–5.

    Article  PubMed  CAS  Google Scholar 

  33. Chen L, Zhang Q, Yang G, Fan L, Tang J, Garrard I, et al. Rapid purification and scale-up of honokiol and magnolol using high-capacity high-speed counter-current chromatography. J Chromatogr A. 2007;1142:115–22.

    Article  PubMed  CAS  Google Scholar 

  34. Shen C, Guo S, Lu C. Degradation behaviors of monomethoxy poly(ethylene glycol)-b-poly(e-caprolactone) nanoparticles in aqueous solution. Polym Adv Technol. 2008;19:66–72.

    Article  CAS  Google Scholar 

  35. Liu CB, Gong CY, Huang MJ, Wang JW, Pan YF, Zhang YD, et al. Thermoreversible Gel–Sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res Part B: Appl Biomater. 2008;84B:165–75.

    Article  CAS  Google Scholar 

  36. Jette KK, Law D, Schmitt EA, Kwon GS. Preparation and drug loading of poly(Ethylene Glycol)-block-Poly(ε-Caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharm Res. 2004;21:1184–91.

    Article  PubMed  CAS  Google Scholar 

  37. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Rel. 2005;109:169–88.

    Article  CAS  Google Scholar 

  38. Gou ML, Huang MJ, Qian ZY, Yang L, Dai M, Li XY, et al. Preparation of anionic poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) copolymeric nanoparticles as basic protein antigen carrier. Growth Factors. 2007;25:202–8.

    Article  CAS  Google Scholar 

  39. Farokhzad OC, Jon S, Khademhosseini A, Tran TNT, LaVan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004;64:7668–72.

    Article  PubMed  CAS  Google Scholar 

  40. Kwon GS, Okano T. Polymeric micelles as new drug carriers. Advan Drug Deliver Rev. 1996;21:107–16.

    Article  CAS  Google Scholar 

  41. Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008;8:2906–12.

    Article  PubMed  CAS  Google Scholar 

  42. Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly(q-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Rel. 2004;98:415–26.

    Article  CAS  Google Scholar 

  43. Lee JS, Hwang SJ, Lee DS. Formation of poly(ethylene glycol)-Poly(ε-caprolactone) nanoparticles via nanoprecipitation. Macromol Res. 2009;17:72–8.

    CAS  Google Scholar 

  44. Kim SY, Lee YM, Shin HJ, Kang JS. Indomethacin-loaded methoxy poly(ethylene glycol)/poly(ε-caprolactone) diblock copolymeric nanosphere: pharmacokinetic characteristics of indomethacin in the normal Sprague-Dawley rats. Biomaterials. 2001;22:2049–56.

    Article  PubMed  CAS  Google Scholar 

  45. Gong CY, Shia S, Dong PW, Kan B, Gou ML, Wang XH, Li XY, et al. Synthesis, characterization, degradation , and in vitro drug release behavior of thermosensitive hydrogel based on PEG-PCL-PEG block copolymers. Int J Pharm. 2009;365:89–99.

    Article  PubMed  CAS  Google Scholar 

  46. Tang N, Du G, Wang N, Liu C, Hang H, Liang W. Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin. J Natl Cancer Inst. 2007;99:1004–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiYong Qian.

Additional information

This work was financially supported by National Natural Science Foundation of China (NSFC20704027), National 863 project (2007AA021902, 2007AA021804 and 2006AA03Z356), Specialized Research Fund for the Doctoral Program of Higher Education (200806100065) and Chinese Key Basic Research Program (2004CB518807).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gou, M., Zheng, X., Men, K. et al. Self-Assembled Hydrophobic Honokiol Loaded MPEG-PCL Diblock Copolymer Micelles. Pharm Res 26, 2164–2173 (2009). https://doi.org/10.1007/s11095-009-9929-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9929-8

KEY WORDS

Navigation