Photosynthetica 2018, 56(4):1047-1057 | DOI: 10.1007/s11099-018-0812-x

Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants

W. U. D. Khan1,*, T. Aziz2, M. A. Maqsood2, M. Farooq3, Y. Abdullah1, P. M. A. Ramzani4, H. M. Bilal2
1 Sustainable Development Study Centre, Government College University, Lahore, Pakistan
2 Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
3 Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
4 Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

Silicon is known to improve resistance against salinity stress in maize crop. This study was conducted to evaluate the influence of silicon application on growth and salt resistance in maize. Seeds of two maize genotypes (salt-sensitive 'EV 1089' and salt-tolerant 'Syngenta 8441') were grown in pots containing 0 and 2 mM Si with and without 50 mM NaCl. After detailed investigation of ion concentrations in different maize organs, both genotypes were further selected in hydroponic experiment on basis of their contrasting response to salinity stress. In the second experiment, pre-germinated seedlings were transplanted into nutrient solution with 0 and 60 mM NaCl with and without 2 mM Si. Both genotypes differed significantly in their response to salinity. Silicon addition alleviated both osmotic and oxidative stress in maize crop by improving the performance of defensive machinery under salinity stress. Silicon application also improved the water-use efficiency in both tested genotypes under both normal and salinity stress conditions. In conclusion, this study implies that the silicon-treated maize plants had better chance to survive under salinity conditions and their photosynthetic and biochemical apparatus was working far better than that of silicon-non-treated plants.

Additional key words: chlorophyll; photosynthetic rate; total phenolics

Received: March 7, 2017; Accepted: July 28, 2017; Prepublished online: December 1, 2018; Published: November 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Khan, W.U.D., Aziz, T., Maqsood, M.A., Farooq, M., Abdullah, Y., Ramzani, P.M.A., & Bilal, H.M. (2018). Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants. Photosynthetica56(4), 1047-1057. doi: 10.1007/s11099-018-0812-x
Download citation

References

  1. Abbas T., Balal R.M., Shahid M.A. et al.: Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism.-Acta. Physiol. Plant. 37: 1-15, 2015. Go to original source...
  2. Acosta-Motos J.R., Diaz-Vivancos P., Álvarez S. et al.: Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery.-Planta 242: 829-846, 2015. Go to original source...
  3. Allison L.E., Moodie C.D.: Carbonate.-In: Black C.A. (ed.): Methods Soil Analysis. Part 2: Chemical and Microbiological Properties. Pp. 1379-1396. Am. Soc. Agron., Madison 1965. Go to original source...
  4. Ahmad M., Zahir Z.A., Khalid M. et al.: Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer's fields.-Plant Physiol. Bioch. 63: 170-176, 2013. Go to original source...
  5. Antolín M.C., Sánchez-Díaz M.: Effects of temporary drought on photosynthesis of alfalfa plants.-J. Exp. Bot. 44: 1341-1349, 1993. Go to original source...
  6. Ashraf M.A., Ashraf M., Ali Q.: Response of two genetically diverse wheat cultivars to salinity stress at different growth stages: leaf lipid peroxidation and phenolic contents.-Pak. J. Bot. 42: 559-565, 2010.
  7. Bhutta W.M., Hanif M.: Genetic variability of salinity tolerance in spring wheat (Triticum aestivum L.).-Acta Agr. Scand. BS. P. 60: 256-261, 2010. Go to original source...
  8. Bayer W.F., Fridovich I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions.-Anal. Biochem. 161: 559-566, 1987. Go to original source...
  9. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976. Go to original source...
  10. Cakmak I., Marschner H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves.-Plant Physiol. 98: 1222-1227, 1992. Go to original source...
  11. Chen A., Cao B., Qi L. et al.: Silicon-moderated K-deficiencyinduced leaf chlorosis by decreasing putrescine accumulation in sorghum.-Ann. Bot.-London 118: 305-315, 2016. Go to original source...
  12. Cooke J., Leishman M.R.: Is plant ecology more siliceous than we realise?-Trends Plant Sci. 16: 61-68, 2011. Go to original source...
  13. Gattullo C.E., Allegretta I., Medici L. et al.: Silicon dynamics in the rhizosphere: connections with iron mobilization.-J. Plant Nutr. Soil Sci. 179: 409-417. 2016. Go to original source...
  14. Gee G.W., Bauder J.W.: Particle-size analysis.-In: Klute A. (ed.): Methods Soil Analysis. Part 1: Physical and Mineralogical Methods. Agron. Monogr. 9. Pp. 383-409. Soil Sci. Soc. Am., Madison 1986. Go to original source...
  15. Jones J.R.J., Case V.W.: Sampling, handling, and analysing plant tissue samples.-In: Westerman R.L. (ed.): Soil Testing and Plant Analysis, 3rd ed. Pp. 389-428. Soil Sci. Soc. Am., Madison 1990. Go to original source...
  16. Kafi M., Rahimi Z.: Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portula caoleracea L.).-Soil Sci. Plant Nutr. 57: 341-347, 2011. Go to original source...
  17. Khan W.U.D., Aziz T., Hussain I. et al.: Silicon: A beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress.-Arch. Agron. Soil Sci. 63: 599-611, 2016a. Go to original source...
  18. Khan W.U.D., Aziz T., Maqsood M.A. et al.: Silicon: A beneficial nutrient under salt stress, its uptake mechanism and mode of action.-In: Hakeem K.R., Akhtar J., Sabir M. (ed.): Soil Science: Agricultural and Environmental Prospective. Pp. 287-301. Springer, Cham 2016b. Go to original source...
  19. Khan W.U.D., Aziz T., Warraich E.A. Khalid M.: Silicon application improves germination and vegetative growth in maize grown under salt stress.-Pak. J. Agr. Sci. 52: 937-944, 2015.
  20. Khatoon T.K., Hussain A., Majeed K. et al.: Morphological variations in maize (Zea mays L.) under different levels of NaCl at germinating stage.-World Appl. Sci. J. 8: 1294-1297, 2010.
  21. Khayatnezhad M., Gholamin R., Jamaati-e-Somarin S.H., Zabihi-e-Mahmoodabad R.: Effects of peg stress on corn cultivars (Zea mays L.) at germination stage.-World Appl. Sci. J. 11: 504-506, 2010.
  22. Liang Y.C., Chen Q., Liu Q. et al.: Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.).-J. Plant Physiol. 160: 1157-1164, 2003. Go to original source...
  23. Liang Y.C., Zhang W.Q., Chen J., Ding R.: Effect of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt stressed barley (Hordeum vulgare L.).-Environ. Exp. Bot. 53: 29-37, 2005. Go to original source...
  24. Liu P., Yin L., Wang S. et al.: Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L.-Environ. Exp. Bot. 111: 42-51, 2015. Go to original source...
  25. Mateos-Naranjo E., Andrades-Moreno L., Davy A.J.: Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.-Plant Physiol. Bioch. 63: 115-121, 2013. Go to original source...
  26. Morales SG., Trejo-Téllez LI., Merino F.C.G. et al.: Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress.-Acta Sci.-Agron. 34: 317-324, 2012. Go to original source...
  27. Munns R., Tester M.: Mechanisms of salinity tolerance.-Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  28. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867-880, 1981.
  29. Nelson D.W., Sommers L.E.: Total carbon, organic carbon and organic matter.-In: Black C.A. (ed.): Methods Soil Analysis. Part 2: Chemical and Microbiological Properties. Agronomia Mongr. 9. Pp. 570-571. Soil Sci. Soc. Am., Madison 1982.
  30. Sabater B., Rodriquez M.I.: Control of chlorophyll degradation in detached leaves of barley and oat through effect of kinetin on chlorophyllase levels.-Physiol. Plantarum 43: 274-276, 1978. Go to original source...
  31. Singleton V.L., Orthofer R., Lamuela-Raventós R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent.-Methods Enzymol. 299: 152-178, 1999. Go to original source...
  32. Steel R.G.D., Torrie J.H., Dickey D.A.: Principles and Procedures of Statistics. A Bio-Metrical Approach, 3rd ed. Pp. 172-177. McGraw Hill Book Co., Inc., New York 1997.
  33. Strain H.H., Svec W.A.: Extraction, separation, estimation and isolation of chlorophylls.-In: Vernon L.P., Seely G.R. (ed.): The Chlorophylls. Pp. 21-66. Academic Press, New York 1966. Go to original source...
  34. Tahir M.A., Aziz T., Rahmatullah.: Silicon induced growth and yield enhancement in two wheat genotypes differing in salinity tolerance.-Commun. Soil Sci. Plan. 42: 395-407, 2011. Go to original source...
  35. Tahir M.A., Aziz T., Farooq M., Sarwar G.: Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes.-Arch. Agron. Soil Sci. 58: 247-256, 2012. Go to original source...
  36. Tuna A.L., Kaya C., Higgs D. et al.: Silicon improves salinity tolerance in wheat plants.-Environ. Exp. Bot. 62: 10-16, 2008. Go to original source...
  37. Waskiewicz A., Muzolf-Panek M., Golinski P.: Phenolic content changes in plants under salt stress.-In: Ahmed P., Azooz M.M., Parsad M.N.V. (ed.): Ecophysiology and Responses of Plants under Salt Stress. Pp. 283-314. Springer, New York-Heidelberg-Dordrecht-London 2013. Go to original source...
  38. Wang S., Liu P., Chen D. et al.: Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber.-Front. Plant Sci. 6: 759, 2015. Go to original source...
  39. Yin L., Wang S., Tanaka K. et al.: Silicon-mediated changes in polyamines participates in silicon-induced salt tolerance in Sorghum bicolor L.-Plant Cell Environ. 39: 245-258, 2016. Go to original source...