Skip to main content
Log in

Tomato (Solanum lycopersicum) health components: from the seed to the consumer

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

It is widely accepted that a healthy diet is an important factor in preventing chronic diseases, and in improving energy balance and weight management. Studies have shown strong inverse correlations between tomato consumption and the risk of certain types of cancer, cardiovascular diseases and age-related macular degeneration. Because tomato is the second-most important vegetable in the world after potato, this horticultural crop constitutes an excellent source of health-promoting compounds due to the balanced mixture of minerals and antioxidants including vitamins C and E, lycopene, β-carotene, lutein and flavonoids such as quercetin. Improvement in phytonutrients in tomatoes can be achieved by cultivar selection, environmental factors, agronomic practices, stage of ripeness at harvest, and appropriate handling and conditioning all the way from the field to the consumer. The purpose of this paper is to review the recent literature of the main factors that can improve the nutritional quality of tomato and consequently their beneficial role in human diet. The importance of genotype selection and the optimization of environmental conditions (light, temperature, humidity, atmospheric CO2 and air pollutants) for high nutritional value is outlined first, followed by the optimization of agricultural practices (soil properties, water quality, mineral nutrition, salinity, grafting, pruning, growing systems, growth promoters, maturity, and mechanical and pest injuries). The review concludes by identifying several prospects for future research such as modelling and genetic engineering of the nutritional value of tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamse P, Peters JL, Jaspers PAPM, Van Tuinen A, Koorneef M, Kendrick RE (1989) Photocontrol of anthocyanin synthesis in tomato seedling: a genetic approach. Photochem Photobiol 50:107–111

    CAS  Google Scholar 

  • Adegoroye AS, Jolliffe PA (1987) Some inhibitory effects of radiation stress on tomato fruit ripening. J Sci Food Agr 39:297–302

    CAS  Google Scholar 

  • Alba R, Cordonnier-Pratt MM, Pratt LH (2000) Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiol 123:363–370

    PubMed  CAS  Google Scholar 

  • Amiot M-J, Tourniaire F, Margotat A (2007) Flavonoids in food and wine. FAV Health 2005. QC, Canada. Acta Hortic 744:107–116

    Google Scholar 

  • Auerswald H, Drews M, Krumbein A (1996) Der einfluss unterschiedlicher anbauverfahren auf merkmale der inneren qualitat von gewächshaustomaten im jahresverfauf. Gartenbauwiss 61:77–83

    CAS  Google Scholar 

  • Awad MA, Jager A (2002) Relationships between fruit nutrients and concentrations of flavonoids and chlorogenic acid in ‘Elstar’ apple skin. Sci Hortic 92:265–276

    CAS  Google Scholar 

  • Baker BP, Benbrook CM, Groth E III, Benbrook KL (2002) Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: insights from three US data sets. Food Add Cont 19:427–446

    CAS  Google Scholar 

  • Bangerth F (1976) Relationship between the Ca content and Ca treatment and the ascorbic acid content of apple, pear and tomato fruits. Qual Plant 26:341–348

    CAS  Google Scholar 

  • Barrett DM, Anthon G (2001) Lycopene content of California-grown tomato varieties. Acta Hort 542:165–173

    CAS  Google Scholar 

  • Betancourt LA, Stevens MA, Kader AA (1977) Accumulation and loss of sugars and reduced ascorbic acid in attached and detached tomato fruits. J Am Soc Hortic Sci 102:721–723

    CAS  Google Scholar 

  • Bourn D, Prescott J (2002) A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Crit Rev Food Sci Nut 42:1–34

    Google Scholar 

  • Bovy A, de Vos R, Kemper M, Schijlen E, Almenar PM, Muir S, Collins G, Robinson S, Verhoeyen M (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509–2526

    PubMed  CAS  Google Scholar 

  • Brandt K, Mølgaard JP (2001) Organic agriculture: does it enhance or reduce the nutritional value of plant foods? J Sci Food Agric 81:924–931

    CAS  Google Scholar 

  • Bruulsema TW, Paliyath G, Schofield A, Oke M (2004) Phosphorus and phytochemicals. Better Crops 88:6–11

    Google Scholar 

  • Caris-Veyrat C, Amiot M-J, Tyssandier V, Grasselly D, Buret M, Mikolajczak M, Guilland J-C, Bouteloup-Demange C, Borel P (2004) Influence of organic versus conventional agricultural practice on the antioxidant microconstituent content of tomatoes and derived purees; consequences on antioxidant plasma status in humans. J Agric Food Chem 52:6503–6509

    PubMed  CAS  Google Scholar 

  • Castle D, Dalgleish J (2005) Cultivating fertile ground for the introduction of plant-derived vaccines in developing countries. Vaccine 23:1881–1885

    PubMed  Google Scholar 

  • Chavarri MJ, Herrera A, Ariño A (2004) Pesticide residues in field-sprayed and processed fruits and vegetables. J Sci Food Agric 84:1253–1259

    CAS  Google Scholar 

  • Collins JK, Perkins-Veazie P, Roberts W (2006) Lycopene: from plants to humans. HortScience 41:1135–1144

    CAS  Google Scholar 

  • Cox SE, Stushnoff C, Sampson DA (2003) Relationship of fruit color and light exposure to lycopene content and antioxidant properties of tomato. Can J Plant Sci 83:913–919

    CAS  Google Scholar 

  • D’Amico ML, Izzo R, Tognoni F, Pardossi A, Navari-Izzo F (2003) Application of diluted sea water to soilless culture of tomato (Lycopersicon esculentum Mill.): Effects on plant growth, yield, fruit quality and antioxidant capacity. Food Agric Environ 1:112–116

    Google Scholar 

  • Dalal M, Dani RG, Kumar PA (2006) Current trends in the genetic engineering of vegetable crops. Sci Hortic 107:215–225

    CAS  Google Scholar 

  • Davies JN, Hobson GE (1981) The constituents of tomato fruit – the influence of environment, nutrition, and genotype. Crit Rev Food Sci Nutr 15:205–280

    PubMed  CAS  Google Scholar 

  • Davis DR, Epp MD, Riordan HD (2004) Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J Am Coll Nutr 23:669–682

    PubMed  CAS  Google Scholar 

  • De Pascale S, Maggio A, Fogliano V, Ambrosino P, Ritieni A (2001) Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J Hort Sci Bio 76:447–453

    Google Scholar 

  • De Stefani EP, Boffetta P, Brennan P, Deneo-Pellegini H, Carzoglio JC, Ronco A, Mendilaharsu M (2000) Dietary carotenoids and risk of gastric cancer: a case–control study in Uruguay. Eur J Cancer Prev 9:329–334

    PubMed  Google Scholar 

  • Dixon RA, Palva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Dorais M (2007) Effect of cultural management on tomato fruit health qualities. FAV Health (2005). QC, Canada. Acta Hortic 744:279–293

    Google Scholar 

  • Dorais M, Turcotte G, Papadopoulos AP, Hao X, Gosselin A (2000) Control of tomato fruit quality and flavour by EC and water management. Agriculture and Agri-Food Canada report, pp 18–21

  • Dorais M, Papadopoulos AP, Gosselin A (2001a) Greenhouse tomato fruit quality: the influence of environmental and cultural factors. Hortic Rev 26:239–319

    CAS  Google Scholar 

  • Dorais M, Papadopoulos AP, Gosselin A (2001b) Influence of EC management on greenhouse tomato yield and fruit quality. Agronomie 21:367–384

    Google Scholar 

  • Dorais M, Dermers DA, van Ieperen W, Papadopoulos AP (2004) Greenhouse tomato fruit cuticle cracking. Hortic Rev 30:163–184

    Google Scholar 

  • Dumas Y, Dadomo M, Di Lucca G, Grolier P (2003) Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Sci Food Agric 83:369–382

    CAS  Google Scholar 

  • Ehret DL, Plant AL (1999) Salt tolerance in crop plants. In: Dhaliwal GS, Arora R (eds) Environmental stress in crop plants. Commonwealth Publishers, New Delhi, pp 69–120

    Google Scholar 

  • El Mahmoodi LT, El Shiati MA, Atwa AA (1966) Effect of soil type on the keeping quality and storage life of tomatoes. Agr Res Rev 42:82–117

    Google Scholar 

  • FAO (2005). Web site database. http://www.fao.org

  • Fernandez-Garcia N, Martinez V, Cerda A, Carvajal M (2004) Fruit quality of grafted tomato plants grown under saline conditions. J Hortic Sci Biotechnol 79:995–1001

    Google Scholar 

  • Franceschi S, Bidoli E, La Vechia C, Talamini R, D’Avanzo B, Negri, E (1994) Tomatoes and risk of digestive-tract cancers. Int J Cancer 59:181–184

    PubMed  CAS  Google Scholar 

  • Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailibity of Fe, Zn and Ca in plants for human nutrition: Review. J Sci Food Agric 80:861–879

    CAS  Google Scholar 

  • Gary C, Jones JW, Tchamitchian M (1998) Crop modelling in horticulture: state of the art. Sci Hortic 74:3–20

    Google Scholar 

  • Gautier H, Rocci A, Buret M, Grasselly D, Dumas Y, Causse M (2004) Effect of photoselective filters on the physical and chemical traits of vine-ripened tomato fruits. Can J Plant Sci 85:439–446

    Google Scholar 

  • Gauthier H, Rocci A, Buret M, Grasselly D, Causse M (2005) Fruit load or fruit position alters response to temperature and subsequently cherry tomato quality. J Sci Food Agric 85:1009–1016

    Google Scholar 

  • Génard M, Stouty M (1996) Modeling the peach sugar contents in relation to fruit growth. J Am Soc Hortic Sci 121:1122–1131

    Google Scholar 

  • Génard M, Bertin N, Bussières P, Gautier H, Habib R, Léchaudel M, Lecomte A, Lescourret F, Lobit P, Quilot B (2007) Towards a virtual fruit focusing on quality: modelling features and potential uses. J Exp Bot 58:917–928

    PubMed  Google Scholar 

  • Gianetti J, Pedrinelli R, Petrucci R, Lazzerini G, De Caterina M, Bellomo G, De Caterina R (2002) Inverse association between carotid intima-media thickness and the antioxidant lycopene in atherosclerosis. Am Heart J 143:467–474

    PubMed  CAS  Google Scholar 

  • Giersch C (2000) Mathematical modelling of metabolism. Curr Opin Plant Biol 3:249–253

    PubMed  CAS  Google Scholar 

  • Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208

    PubMed  CAS  Google Scholar 

  • Giorgi M, Capocasa F, Scalzo J, Murri G, Battino M, Mezzetti B (2005) The rootstock effects on plant adaptability, production, fruit quality, and nutrition in the peach (cv. ‘Suncrest’). Sci Hortic 107:36–42

    Google Scholar 

  • Giovannucci E (2002) A review of epidimiologic studies of tomatoes, lycopene, and prostate cancer. Exp Biol Med 227:852–859

    CAS  Google Scholar 

  • Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer. J Nat Cancer Inst 87:1767–1776

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Rimm E, Liu Y, Stampfer M, Willett W (2002) A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst 94:391–398

    PubMed  CAS  Google Scholar 

  • Giuntini D, Graziani G, Lercari B, Fogliano V, Soldatini GF, Ranieri A (2005) Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation. J Agric Food Chem 53:3174–3181

    PubMed  CAS  Google Scholar 

  • Gomez JM, Hernandez JA, Jimenez A, Del Rio LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31:11–18

    Google Scholar 

  • Gonzalez M, Miglioranza KSB, Aizpún de Moreno JE, Moreno VJ (2005) Evaluation of conventionally and organically produced vegetables for high lipophilic organochlorine pesticide (OCP) residues. Food Chem Toxicol 43:261–269

    PubMed  CAS  Google Scholar 

  • Grievink L, de Waart FG, Schouten EG, Kok FJ (2000) Serum carotenoids, alpha-tocopherol, and lung function among Dutch elderly. Am J Respir Crit Care Med 161:790–795

    PubMed  CAS  Google Scholar 

  • Guichard S, Gary C, Longuenesse JJ, Leonardi C (1999) Water fluxes and growth of greenhouse tomato fruits under summer conditions. Acta Hort 507:223–230

    Google Scholar 

  • Guichard S, Bertin N, Leonard C, Gary C (2001) Tomato fruit quality in relation to water and carbon fluxes. Agronomie 21:385–392

    Google Scholar 

  • Hammer GL, Sinclair TR, Chapman SC, Van-Oosterom E (2004) On systems thinking, systems biology, and the in silico plant. Plant Physiol 134:909–911

    PubMed  CAS  Google Scholar 

  • Hart DJ, Scott KJ (1995) Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem 54:101–111

    CAS  Google Scholar 

  • Heuvelink E, Dorais M (2005) Crop growth and yield. In: Heuvelink E (ed) Tomato. Crop production science in horticulture series, no. 13. CAB International, Wallingford, Oxon, UK, 352 pp

  • Hobson GE (1988) Pre- and post-harvest strategies in the production of high quality tomato fruit. Appl Agric Res 3:282–287

    Google Scholar 

  • Hsu WJ, Yokohama H (1991) Effect of 2-(3,4-dichlorophenoxy) triethylamine on tomato Lycopersicon esculentum Cv UCD-82. Agric Food Chem 39:96–98

    CAS  Google Scholar 

  • Idso SB, Idso KE (2001) Effects of atmospheric CO2 enrichment on plant constituents related to animal and human health. Environ Exp Bot 45:179–199

    PubMed  CAS  Google Scholar 

  • Idso SB, Kimball BA, Shaw PE, Widmer W, Vanderslice JT, Higgs DJ, Montanari A, Clark WD (2002) The effect of elevated atmospheric CO2 on the vitamin C concentration of (sour) orange juice. Agric Ecosyst Environ 90:1–7

    CAS  Google Scholar 

  • Jen JJ (1974) Influence of spectral quality of light on pigment systems of ripening tomatoes. J Food Sci 39:907–910

    Google Scholar 

  • Jones CM, Mes P, Myers JR (2003) Characterization and inheritance of the antocyanin fruit (Aft) tomato. J Hered 94:449–456

    PubMed  CAS  Google Scholar 

  • Ju Z, Duan Y, Ju Z (1999) Effects of covering the orchard floor with reflecting films on pigment accumulation and fruit coloration in ‘Fuji’ apples. Sci Hortic 82:47–56

    CAS  Google Scholar 

  • Kader AA, Stevens MA, Albright-Holten M, Morris LL, Algazi M (1977) Effect of fruit ripeness when picked on flavour and composition in fresh market tomatoes. J Am Soc Hortic Sci 102:724–731

    CAS  Google Scholar 

  • Keithly JH, Yokohama H, Gausman H (1990) Enhanced yield of tomato in response to 2-(3,4-dichlorophenoxy)triethylamine (DCPTA). Plant Growth Regul 9:127–136

    CAS  Google Scholar 

  • Kerckhoffs LHJ, Kendrick RE, Whitelam GC, Smith H (1992) Extension growth and anthocyanin responses of photomorphogenic tomato mutants to changes in the phytochrome photoequilibrium during the daily photoperiod. Photochem Photobiol 56:611–615

    CAS  Google Scholar 

  • Kerckhoffs LHJ, Schreuder MEL, Van Tuinen A, Koornneef M, Kendrick RE (1997) Phytochrome control of antocyanin biosynthesis in tomato seedlings: analysis using photomorphogenic mutants. Photochem Photobiol 65:374–381

    CAS  Google Scholar 

  • Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao DY, Katz NB (2002) Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med 227:845–851

    CAS  Google Scholar 

  • Kirk DD, McIntosh K (2005) Social acceptance of plant-made vaccines: indications from a public survey. AgBioForum 8:228–234

    Google Scholar 

  • Knight AJ (2006) Does application matter? An examination of public perception of agricultural biotechnology applications. AgBioForum 9:121–128

    Google Scholar 

  • Koskitalo LN, Ormrod DP (1972) Effects of sub-optimal ripening temperatures on the color quality and pigment composition of tomato fruit. J Food Sci 37:56–59

    CAS  Google Scholar 

  • Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A (2001) Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131:3303–3306

    PubMed  CAS  Google Scholar 

  • Krauss S, Schnitzler WH, Grassmann J, Woitke M (2006) The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J Agric Food Chem 54:441–448

    PubMed  CAS  Google Scholar 

  • Krumbein A, Schwarz D, Kläring H-P (2006) Effects of environmental factors on carotenoid content in tomato (Lycopersicon esculentum (L.) Mill.) grown in a greenhouse. J Appl Bot Food Qual 80:160–164

    CAS  Google Scholar 

  • Kuti JO, Konuru HB (2005) Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. J Sci Food Agri 85:2021–2026

    CAS  Google Scholar 

  • Lancaster JE (1992) Regulation of skin colour in apples: a review. Crit Rev Plant Sci 10:487–502

    CAS  Google Scholar 

  • Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385:28–40

    PubMed  CAS  Google Scholar 

  • Le Gall G, DuPont MS, Mellon FA, Davis AL, Collins GJ, Verhoeyen ME, Colquhoun IJ (2003) Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J Agric Food Chem 51:2438–2446

    PubMed  CAS  Google Scholar 

  • Lee KS, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220

    CAS  Google Scholar 

  • Leonardi C, Ambrosino P, Esposito F, Fogliano V (2000a) Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J Agric Food Chem 48:4723–4727

    PubMed  CAS  Google Scholar 

  • Leonardi C, Guichard S, Bertin N (2000b) High vapour pressure deficit influences growth, transpiration and quality of tomato fruits. Sci Hortic 84:285–296

    Google Scholar 

  • Lescourret F, Génard M (2005) A virtual peach fruit model simulating changes in fruit quality during the final stage of fruit growth. Tree Physiol 25:1303–1315

    PubMed  CAS  Google Scholar 

  • Lester GE (2006) Environmental regulation of human health nutrients (ascorbic acid, carotene, and folic acid) in fruits and vegetables. HortScience 41:59–64

    CAS  Google Scholar 

  • Levi F, Pasche C, Lucchini F, LaVecchia C (2001) Dietary intake of selected micronutrients and breast-cancer risk. Int J Cancer 91:260–263

    PubMed  CAS  Google Scholar 

  • Levy J, Bizin E, Feloman B, Giat Y, Minister A, Danilenko M, Sharoni Y (1995) Lycopene is more potent inhibitor of human cancer cell proliferation than either alpha-carotene or beta-carotene. Nutr Cancer 24:257–266

    PubMed  CAS  Google Scholar 

  • Lobit P, Génard M, Wu BH, Soing P, Habib R (2003) Modelling citrate metabolism in fruits: response to growth and temperature. J Exp Bot 54:2489–2501

    PubMed  CAS  Google Scholar 

  • Lobit P, Génard M, Soing P, Habib R (2006) Modelling malic acid accumulation in fruits: relationships with organic acids, potassium, and temperature. J Exp Bot 57:1471–1483

    PubMed  CAS  Google Scholar 

  • Locascio SJ (2005) Management of irrigation for vegetables: past, present, and future. HortTechnology 15:482–484

    Google Scholar 

  • Lumpkin HM (2005) A comparison of lycopene and other phytochemica in tomatoes grown under conventional and organic management systems. Technical Bulletin No. 34, AVRDC publication number 05-623. AVRDC – The world vegetable center, Shanhua, Taiwan, 48 pp

  • Luthria DL, Mukhopadhyay S, Krizek DT (2006) Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. J Food Compos Anal 19:771–777

    CAS  Google Scholar 

  • Ma JK-C, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines. EMBO Rep 6:593–599

    PubMed  CAS  Google Scholar 

  • Mahajan G, Singh KG (2006) Response of greenhouse tomato to irrigation and fertigation. Agric Water Manage 84:202–206

    Google Scholar 

  • Manning JW, Tiedemann A (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–245

    PubMed  CAS  Google Scholar 

  • Matsuzoe N, Zushi K, Johjima T (1998) Effect of soil water deficit on coloring and carotene formation in fruits of red, pink and yellow type cherry tomatoes. J Jpn Soc Hortic Sci 67:600–606

    CAS  Google Scholar 

  • Mayne ST (1996) Beta-carotene, carotenoids, and disease prevention in humans. FASEB J 10:690–701

    PubMed  CAS  Google Scholar 

  • McClure JW (1975) Physiological functions of flavonoids. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Chapman and Hall, London, pp 970–1055

    Google Scholar 

  • McCollum JP (1954) Effects of light on the formation of carotenoids in tomato fruit. Food Res 19:182–189

    CAS  Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    PubMed  CAS  Google Scholar 

  • Ménard C, Dorais M, Hovi T, Gosselin A (2006) Developmental and physiological responses of tomato and cucumber to additional blue light. Acta Hort 711:291–294

    Google Scholar 

  • Merzlyak MN, Solovchenko AE, Chivkunova OB (2002) Patterns of pigment changes in apple fruits during adaptation to high sunlight and sunscald development. Plant Physiol Biochem 40:679–684

    CAS  Google Scholar 

  • Minorsky PV (2003) Achieving the in silico plant. Systems biology and the future of plant biological research. Plant Physiol 132:404–409

    CAS  Google Scholar 

  • Mol J, Jenkins G, Schäfer E, Weiss D (1996) Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis. Crit Rev Plant Sci 15:525–557

    CAS  Google Scholar 

  • Montagu KD, Goh KM (1990) Effects of forms and rates of organic and inorganic nitrogen fertilisers on the yield and some quality indices of tomatoes (Lycopersicon esculentum Miller). New Zealand J Crop Hort Sci 18:31–37

    CAS  Google Scholar 

  • Mor TS, Sternfeld M, Soreq H, Arntzen CJ, Mason HS (2001) Expression of recombinant human acetylcholinesterase in transgenic tomato plants. Biotechnol Bioeng 75:259–266

    PubMed  CAS  Google Scholar 

  • Mortensen A, Skibsted LH (1997) Importance of carotenoid structure in radical scavenging reactions. J Agric Food Chem 45:121–124

    Google Scholar 

  • Mozafar A (1994) Plant vitamins: agronomic, physiological, and nutritional aspects. CRC Press, Boca Raton

    Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, De Vos CHR, van Tuinen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    PubMed  CAS  Google Scholar 

  • Muller K, Carpenter KL, Challis IR, Skepper JN, Arends MJ (2002) Carotenoids induce apoptosis in the T-lymphoblast cell line Jurkat E6.1. Free Radic Res 36:791–802

    PubMed  CAS  Google Scholar 

  • Nederhoff EM (1994) Effects of CO2 concentration on photosynthesis, transpiration and production of greenhouse fruit vegetable crops. Dissertation, Wageningen, The Netherlands

  • Ness AR, Powles JW (1997) Fruit and vegetables, and cardiovascular disease: a review. Int J Epidemiol 26:1–13

    PubMed  CAS  Google Scholar 

  • Nguyen ML, Schwartz SJ (1999) Lycopene: chemical and biological properties. Food Technol 53:38–45

    CAS  Google Scholar 

  • Ninu L, Ahmad M, Miarelli C, Cashmore AR, Giullano G (1999) Cryptochrome 1 controls tomato development in response to blue light. Plant J 18:551–556

    PubMed  CAS  Google Scholar 

  • Offord EA (1998) Nutritional and health benefits of tomato products. In: Proc. tomato and health seminar, Pamplona, Spain, 25–28 May, pp 5–10

  • Olson JA (1989) Provitamin A function of carotenoids: the conversion of beta-carotene into vitamin A. J Nutr 119:105–108

    PubMed  CAS  Google Scholar 

  • Özçelik N, Akilli M (1999) Effects of CO2 enrichment on vegetable growth, yield and quality of greenhouse grown tomatoes in soil and soilless cultures. Acta Hortic 486:155–160

    Google Scholar 

  • Paiva EAS, Sampaio RA, Martinez HEP (1998) Composition and quality of tomato fruit cultivated in nutrient solutions containing different calcium concentrations. J Plant Nutr 21:2653–2661

    CAS  Google Scholar 

  • Parks BM, Folta KM, Spalding EP (2001) Photocontrol of stem growth. Cur Opin Plant Biol 4:436–440

    CAS  Google Scholar 

  • Peñuelas J, Estiarte M (1998) Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol Evol 13:20–24

    Google Scholar 

  • Petersen KK, Willumsen J, Kaack K (1998) Composition and taste of tomatoes as affected by increased salinity and different salinity sources. J Hort Sci Biotechnol 73:205–215

    Google Scholar 

  • Premuzic Z, Bargiela M, Garcia A, Rendina A, Iorio A (1998) Calcium, Iron, K, P, and vitamin C content of organic hydroponic tomatoes. HortScience 33:255–257

    CAS  Google Scholar 

  • Prohens J, Miro R, Rodriguez-Burruezo A, Chiva S, Verdu G, Nuez F (2004) Temperature, electrolyte leakage, ascorbic acid content and sunscald in two cultivars of pepino, Solanum muricatum. J Hort Sci Biotechnol 79:375–379

    CAS  Google Scholar 

  • Quilot B, Kervella J, Génard M, Lescourret F (2005) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56:3083–3092

    PubMed  CAS  Google Scholar 

  • Raffo A, Leonardi C, Fogliano V, Ambrosino P, Salucci M, Gennaro L, Bugianesi R, Giuffrida F, Quaglia G (2002) Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. J Agric Food Chem 50:6550–6556

    PubMed  CAS  Google Scholar 

  • Rissanen TH, Voutilainen S, Nyyssonen K, Lakka TA, Sivenius J, Salonen R, Kaplan GA, Salonen JT (2001) Low serum lycopene concentration is associated with an excess incidence of acute coronay events and stroke: the Kuopio ischaemic heart disease risk factor study. Br J Nutr 85:749–754

    Article  PubMed  CAS  Google Scholar 

  • Robertson GH, Mahoney NE, Goodman N, Pavlath AE (1995) Regulation of lycopene formation in cell suspension culture of VNFT tomato (Lycopersicon esculentum) by CPTA, growth regulators, sucrose, and temperature. J Exp Bot 46:667–673

    CAS  Google Scholar 

  • Romanova AK (2005) Physiological and biochemical aspects and molecular mechanisms of plant adaptation to the elevated concentration of atmospheric CO2. Russian J Plant Physiol 52:112–126

    CAS  Google Scholar 

  • Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666–669

    PubMed  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to b-carotene formation in plant chromoplasts discovered by map-based cloning of Beta (B) and old-gold (og) colour mutations in tomato. Proc Natl Acad Sci 97:11102–11107

    PubMed  CAS  Google Scholar 

  • Rosales MA, Ruiz JM, Hernandez J, Soriano T, Castilla N, Romero L (2006) Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. J Sci Food Agric 86:1545–1551

    CAS  Google Scholar 

  • Rudich J, Kalmar C, Geizenberg C, Harel S (1977) Low water tensions in defined growth stages of processing tomato plants and their effects on yield and quality. J Hort Sci 52:391–399

    Google Scholar 

  • Santamaria P, Campanile G, Parente A, Elia A (2003) Subirrigation vs drip-irrigation: effects on yield and quality of soilless grown cherry tomato. J Hortic Sci Biotechnol 78:290–296

    Google Scholar 

  • Scalzo J, Politi A, Pellegrini N, Mezzetti B, Battino M (2005) Plant genotype affects total antioxidant capacity and phenolic content in fruit. Nutrition 21:207–213

    PubMed  CAS  Google Scholar 

  • Schijlen EGWM, Ric de Vos CH, van Tunen AJ, Bovy AG (2004) Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65:2631–2648

    PubMed  CAS  Google Scholar 

  • Schouten RE, Tijskens LMM, van Kooten O (2002) Predicting keeping quality of batches of cucumber fruit based on a physiological mechanism. Postharvest Biol Technol 26:209–220

    Google Scholar 

  • Sesso HD, Liu S, Gaziano JM, Buring JE (2003) Dietary lycopene, tomato-based food products and cardiovascular disease in women. J Nutr 133:2336–2341

    PubMed  CAS  Google Scholar 

  • Sesso HD, Buring JE, Norkus EP, Gaziano JM (2004) Plasma lycopene, other carotenoids, and retinol and the risk of cardiovascular disease in women. Am J Clin Nutr 79:47–53

    PubMed  CAS  Google Scholar 

  • Sheoran IS, Dumonceaux T, Datla R, Sawhney VK (2006) Anthocyanin accumulation in the hypocotyls of an ABA-over producing male-sterile tomato (Lycopersicon esculentum) mutant. Physiol Plant 127:681–689

    CAS  Google Scholar 

  • Shi J, Le Maguer M (2000) Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Biotechnol 20:293–334

    PubMed  CAS  Google Scholar 

  • Shi J, Le Maguer M, Bryan M (2002) Functional foods; biochemical and processing aspects. CRC Press

  • Shinohara Y, Suzuki Y, Shibuya M (1982) Effects of cultivations method, growing season and cultivar on the ascorbic acid content of tomato fruits. J Jpn Soc Hort Sci 51:338–343

    Google Scholar 

  • Sies H, Stahl W (1998) Lycopene antioxidant and biological effects and its bioavailability in the human. Proc Soc Exp Biol Med 218:121–124

    PubMed  CAS  Google Scholar 

  • Smirnoff N (1995) Antioxidant systems and plant response to the environment. In: Smirnoff (ed) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific Publishers Ltd, Oxford, pp 217–243

    Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    CAS  Google Scholar 

  • Sorce C, Massai R, Picciarelli P, Lorenzi R (2002) Hormonal relationships in xylem sap of grafted and ungrafted Prunus rootstocks. Sci Hortic 93:333–342

    CAS  Google Scholar 

  • Spalding EP, Cosgrove DJ (1989) Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber. Planta 178:407–410

    PubMed  CAS  Google Scholar 

  • Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Rev Biochem Biophys Acta 1740:101–107

    CAS  Google Scholar 

  • Steele M, Odumeru J (2004) Irrigation water as source of foodborne pathogens on fruit and vegetables. J Food Prot 67:2839–2849

    PubMed  Google Scholar 

  • Stewart AJ, Chapman W, Jenkins GI, Graham I, Martin T, Crozier A (2001) The effect of N and phosphorous deficiency on flavonol accumulation in plant tissues. Plant Cell Environ 24:1189–1197

    CAS  Google Scholar 

  • Stoger E, Sack M, Fischer R, Christou P (2002) Plantibodies: applications advantages and bottlenecks. Curr Opin Biotech 13:161–166

    PubMed  CAS  Google Scholar 

  • Struik PC, Yin X, de Visser P (2005) Complex quality traits: now time to model. Trends 10:513–516

    CAS  Google Scholar 

  • Subbiah K, Perumal R (1990) Effect of calcium sources, concentrations, stages and number of sprays on physico-chemical properties of tomato fruits. South Indian Hortic 38:20–27

    Google Scholar 

  • Suslow T (1997) Postharvest chlorination, basic properties and key points for effective disinfection. Division of Agriculture and Natural Resources, University of California, Davis, USA, Publication 8003, 8 pp

  • Thakur BR, Singh RK, Nelson PE (1996) Quality attributes of processed tomato products: a review. Food Rev Int 12:375–401

    CAS  Google Scholar 

  • Thomas RL, Jen JJ (1975) Phytochrome-mediated carotenoids biosynthesis in ripening tomatoes. Plant Physiol 56:452

    PubMed  CAS  Google Scholar 

  • Thompson KA, Marshall MR, Sims CA, Wei CI, Sargent SA, Scott JW (2000) Cultivar, maturity, and heat treatment on lycopene content in tomatoes. J Food Sci 65:791–795

    CAS  Google Scholar 

  • Tomas-Barberan FA, Espin JC (2001) Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J Sci Food Agric 81:853–876

    CAS  Google Scholar 

  • Tomes ML (1963) Temperature inhibition of carotene synthesis in tomato. Bot Gaz 124:180–185

    CAS  Google Scholar 

  • Torres CA, Andrews PK, Davies NM (2006) Physiological and biochemical responses of fruit exocarp of tomato (Lycopersicon esculentum Mill.) mutants to natural photo-oxidative conditions. J Exp Bot 57:1933–1947

    PubMed  CAS  Google Scholar 

  • Trudel MJ, Ozbun JL (1971) Influence of K on carotenoid content of tomato fruit. J Am Soc Hort Sci 96:763–765

    CAS  Google Scholar 

  • Tsakiris IN, Danis TG, Stratis IA, Nikitovic D, Dialyna IA, Alegakis AK, Tsakiris AM (2004) Monitoring of pesticide residues in fresh peaches produced under conventional and integrated crop mangement cultivation. Food Add Contam 21:670–677

    CAS  Google Scholar 

  • Ubi BE (2004) External stimulation of anthocyanin biosynthesis in apple fruit. Food Agric Environ 2:65–70

    CAS  Google Scholar 

  • Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53:2099–2106

    PubMed  CAS  Google Scholar 

  • Verkerke W, Kersten M (2000) Validation of a preliminary model for tomato fruit taste based on instrumental measurements. Acta Hortic 519:121–124

    Google Scholar 

  • Walker RR (1986) Sodium exclusion and potassium-sodium selectivity in salt-treated trifoliate orange (Poncirus trifoliate) and Cleopatra mandarin (Citrus reticulate) plants. Aust J Plant Physiol 13:293–303

    Article  CAS  Google Scholar 

  • Watson R, Rodhe H, Oescheger H, Siegenthaler UO (1990) Greenhouse gases and aerosols. In: Houghton JT et al. (eds) Climate change: the scientific assessment. Cambridge Univ. Press, pp 1–40

  • Woese K, Lange D, Boess C, Bögl KW (1997) A comparison of organically and conventionally grown foods – results of a review of the relevant literature. J Sci Food Agric 74:281–293

    CAS  Google Scholar 

  • Wu M, Buck JS, Kubota C (2004) Effects of nutrient solution EC, plant microclimate and cultivars on fruit quality and yield of hydroponic tomatoes (Lycopersicon esculentum). Acta Hortic 659:541–547

    Google Scholar 

  • Zushi K, Matsuzoe N (1998) Effect of soil water deficit on vitamin C, sugar, organic acid, amino acid and carotene contents of large-fruited tomatoes. J Jpn Soc Hort Sci 67:927–933

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Dorais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorais, M., Ehret, D.L. & Papadopoulos, A.P. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev 7, 231–250 (2008). https://doi.org/10.1007/s11101-007-9085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-007-9085-x

Keywords

Navigation