Skip to main content
Log in

A review of advanced machine learning methods for the detection of biotic stress in precision crop protection

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Effective crop protection requires early and accurate detection of biotic stress. In recent years, remarkable results have been achieved in the early detection of weeds, plant diseases and insect pests in crops. These achievements are related both to the development of non-invasive, high resolution optical sensors and data analysis methods that are able to cope with the resolution, size and complexity of the signals from these sensors. Several methods of machine learning have been utilized for precision agriculture such as support vector machines and neural networks for classification (supervised learning); k-means and self-organizing maps for clustering (unsupervised learning). These methods are able to calculate both linear and non-linear models, require few statistical assumptions and adapt flexibly to a wide range of data characteristics. Successful applications include the early detection of plant diseases based on spectral features and weed detection based on shape descriptors with supervised or unsupervised learning methods. This review gives a short introduction into machine learning, analyses its potential for precision crop protection and provides an overview of instructive examples from different fields of precision agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In this article, the following notation is used: matrices are noted as bold upper-case letters in italics, vectors as bold lower-case letters in italics and scalars as lower-case letters in italics. Models and distributions which can have various representations are noted as bold upper-case letters.

Abbreviations

FAO:

Food and agriculture organization of the United Nations

EPPO:

European and Mediterranean plant protection organization

SVM:

Support vector machine

SVR:

Support vector regression

Rbf:

Radial basis function kernel

NN:

Neural networks

SOM:

Self-organizing maps

VI:

Vegetation index

NDVI:

Normalized difference vegetation index

PCA:

Principal component analysis

PCs:

Principal components

LDA:

Linear discriminant analysis

QDA:

Quadratic discriminant analysis

PLS:

Partial least squares

NIR:

Near infrared

RGB:

Red, green and blue color image

LAB:

LAB-color space: lightness (L), a and b for color-component dimensions

YCBCR:

YCBCR-color space: luminance (Y), blue-yellow chrominance (CB), red-green chrominance (CR)

HSV:

HSV-color space: hue, saturation, value

References

  • Ahmed, F., Al-Mamun, H. A., Bari, H. A. S. M., Hossain, E., & Kwan, P. (2012). Classification of crops and weeds from digital images: a support vector machine approach. Crop Protection, 40, 98–104.

    Article  Google Scholar 

  • Alchanatis, V., Ridel, L., Hetzroni, A., & Yaroslavsky, L. (2005). Weed detection in multi-spectral images of cotton fields. Computers and Electronics in Agriculture, 47(3), 243–260.

    Article  Google Scholar 

  • Arribas, J. I., Sanches-Ferrero, G. V., Ruiz-Ruiz, G., & Gomez-Gil, J. (2011). Leaf classification in sunflower crops by computer vision and neural networks. Computers and Electronics in Agriculture, 78(1), 9–18.

    Article  Google Scholar 

  • Arthur, D., & Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. In: N. Bansal, K. Pruhs, C. Stein (Eds.), Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms (SODA) (pp. 1027–1035). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

  • Baker, J., Deng, L., Glass, J., Khudanpur, S., Lee, C. H., Morgan, N., et al. (2009). Developments and directions in speech recognition and understanding, Part 1. IEEE Signal Processing Magazine, 26(3), 75–80.

    Article  Google Scholar 

  • Batista, G. E. A. P. A., Campara, B., Keogh, E. (2010). Classification of live moths combining texture, color, and shape primitives. In: S. Draghici, T. M. Khoshgoftaar, V. Palade, W. Pedrycz, M. A. Wani X.Zhu (Eds.), Proceedings of the Ninth International Conference on Machine learning and Application, IEEE, (pp 903–906). New York, NY, USA.

  • Behmann, J., Steinrücken, J., & Plümer, L. (2014). Detection of early plant stress responses in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 98–111.

    Article  Google Scholar 

  • Berdugo, C., Zito, R., Paulus, S., & Mahlein, A.-K. (2014). Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathology,. doi:10.1111/ppa.12219.

    Google Scholar 

  • Bezdek, J.C. (1981). Pattern recognition with fuzzy objective function algorithms, Series of Advanced applications in pattern recognition. Plenum Press, New York, USA.

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning. New York, USA: Springer.

    Google Scholar 

  • Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Science, 29(2), 59–107.

    Article  Google Scholar 

  • Breiman, L. (2001a). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Breiman, L. (2001b). Statistical modeling: the two cultures. Statistical Science, 16(3), 199–231.

    Article  Google Scholar 

  • Burks, T. F., Shearer, S. A., Heath, J. R., & Donohue, K. D. (2005). Evaluation of neural-network classifiers for weed species discrimination. Biosystems Engineering, 91(3), 293–304.

    Article  Google Scholar 

  • Buxton, H. (2003). Learning and understanding dynamics scene activity: a review. Image and Vision Computing, 21(1), 125–136.

    Article  Google Scholar 

  • Camargo, A., & Smith, J. S. (2009). Image pattern classification for the identification of disease causing agents in plants. Computers and Electronics in Agriculture, 66(2), 121–125.

    Article  Google Scholar 

  • Chaerle, L., Hagenbeck, D., De Bruyne, E., Valcke, R., & Van der Straeten, D. (2004). Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiology, 45(7), 887–896.

    Article  CAS  PubMed  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.

    Google Scholar 

  • Dey, V., Zhang, Y., Zhong, M. (2010). A review on image segmentation techniques with remote sensing perspective. In: W. Wagner, B. Székely (Eds.), Proceedings of the International Society for Photogrammetry and Remote Sensing (ISPRS) TC VII Symposium, IAPRS, 38(7A), (pp. 5–7).

  • Duda, R. O., Hart, P. E., & Stork, D. G. (1995). Pattern Classification and Scene Analysis (2nd ed.). Hoboken, NJ, USA: John Wiley & Sons Inc.

    Google Scholar 

  • EPPO, European and Mediterreanean Plant Protection Organization (2014). EPPO plant protection thesaurus, (http://eppt.eppo.org/#).

  • FAO, Food and Agriculture Organization of the United Nations. (2011). Save and grow. Rome, Italy: FAO, Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Franke, J., Gebhardt, S., Menz, G., & Helfrich, H.-P. (2009). Geostatistical analysis of the spatiotemporal dynamics of powdery mildew and leaf rust in wheat. Phytopathology, 99(8), 974–984.

    Article  PubMed  Google Scholar 

  • Friedl, M. A., Brodley, C. E., & Strahler, A. H. (1999). Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Transactions on Geoscience and Remote Sensing, 37(2), 969–977.

    Article  Google Scholar 

  • Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture, 91, 106–115.

    Article  Google Scholar 

  • Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828–831.

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt, S., & Kühbauch, W. (2007). A new algorithm for automatic Rumex obtusifolius detection in digital images using colour and texture features and the influence of image resolution. Precision Agriculture, 8(1–2), 1–13.

    Article  Google Scholar 

  • Gerhards, R., & Oebel, H. (2006). Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Research, 46(3), 185–193.

    Article  Google Scholar 

  • Gerhards, R., & Sökefeld, M. (2003). Precision farming in weed control—system components and economic benefits. In: J. V Stafford, A. Werner (Eds.), Precision Agriculture ‘03 Proceedings of the 3rd European Conference on Precision Agriculture, (pp 229–240). Wageningen Academic Publishers, The Netherlands.

  • Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87.

    Article  Google Scholar 

  • Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). Hierarchical clustering. Data mining, inference and prediction (2nd ed.)., Springer Series in Statistics New York, NY, USA: Springer.

    Google Scholar 

  • Hillnhütter, C., & Mahlein, A. K. (2008). Early detection and localization of sugar beet diseases: new approaches. Gesunde Pflanzen, 60(4), 143–149.

    Article  Google Scholar 

  • Huang, Y., Lan, Y., Thomson, S. J., Fang, A., Hoffmann, W. C., & Lacey, R. E. (2010). Development of soft computing and applications in agricultural and biological engineering. Computers and Electronics in Agriculture, 71(2), 107–127.

    Article  Google Scholar 

  • Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1), 55–63.

    Article  Google Scholar 

  • Jebara, T. (2004). Machine Learning: Discriminative and Generative., Springer Series in Engineering and Computer Science Berlin, Germany: Springer.

    Book  Google Scholar 

  • Jensen, J.R. (2007). Remote sensing of the environment: an earth resource perspective 2nd. In: D. Kaveney (Ed.). Upper Saddle River, NJ, USA: Prentice Hall.

  • Jolliffe, I. T. (2002). Principal component analysis., Springer series in statistics NewYork, NY, USA: Springer.

    Google Scholar 

  • Karimi, Y., Prasher, O. S., Patel, R. M., & Kim, H. S. (2006). Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture, 51(1–2), 99–109.

    Article  Google Scholar 

  • Kohavi, R., & John, H. G. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324.

    Article  Google Scholar 

  • Lafferty, J., Pereira, F., McCallum, A. (2001). Conditional random fields: probabilistic models for segmenting and labelling sequence data. In: C. E. Brodley, A. P. Danyluk (Eds.), Proceedings of the 18th International Conference on Machine Learning 2001 (ICML 2001) (pp 282–289). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

  • Lamb, D. W., & Brown, R. B. (2001). PA-Precision agriculture: remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research, 78(2), 117–125.

    Article  Google Scholar 

  • Larios, N., Soran, B., Shapiro, L. G., Martinez-Munoz, G., Lin, J., Dietterich, T. G. (2010). Haar random forest features and SVM spatial matching kernel for stonefly species identification. Proceedings of IEEE International Conference on Pattern Recognition (ICPR), IEEE, (pp. 2624–2627). Istanbul, Turkey.

  • Laudien, R., Bareth G., Doluschitz, R. (2003). Analysis of hyperspectral field data for detection of sugar beet diseases. In: Z. Harnos, M. Herdon, T. B. Wiwczaroski. (Eds.), Proceedings of the 4th European Federation for Information Technology in Agriculture, Food and the Environment (EFITA) Conference (pp. 375–381). Debrecen-Budapest, Hungary.

  • Lee, W. S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D., & Li, C. (2010). Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 74(1), 2–33.

    Article  Google Scholar 

  • Liu, Z.-Y., Wu, H.-F., & Huang, J.-F. (2010). Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Computer and Electronics in Agriculture, 72(2), 99–106.

    Article  Google Scholar 

  • Longchamps, L., Panneton, B., Samson, G., Leroux, G., & Thériault, R. (2010). Discrimination of corn, grasses and dicot weeds by their UV-induced fluorescence spectral signature. Precision Agriculture, 11, 181–197.

    Article  Google Scholar 

  • Lopez-Granados, F., Pena-Barragan, J. M., Jurado-Exposita, M., Francisco-Fernandez, M., Cao, R., Alosno-Betanzos, A., et al. (2008). Multispectral classification of grass weeds and wheat (Triticum durum) using linear and nonparametric functional discriminant analysis and neural networks. Weed Research, 48(1), 28–37.

    Article  Google Scholar 

  • Mahlein, A.-K., Oerke, E.-C., Steiner, U., & Dehne, H.-W. (2012a). Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology, 133(1), 197–209.

    Article  CAS  Google Scholar 

  • Mahlein, A.-K., Rumpf, T., Welke, P., Dehne, H.-W., Plümer, L., Steiner, U., et al. (2013). Development of spectral vegetation indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30.

    Article  Google Scholar 

  • Mahlein, A.-K., Steiner, U., Hillnhütter, C., Dehne, H.-W., & Oerke, E.-C. (2012b). Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods, 8(1), 3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Martínez, A. M., & Kak, A. C. (2001). Pca versus lda. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 228–233.

    Article  Google Scholar 

  • Mewes, T., Franke, J., & Menz, G. (2011). Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precision Agriculture, 12(6), 795–812.

    Article  Google Scholar 

  • Mirik, M., Michels, G. J, Jr, Kassymzhanova-Mirik, S., & Elliott, N. C. (2007). Reflectance characteristics of Russian wheat aphid (Hemiptera: aphididae) stress and abundance in winter wheat. Computers and Electronics in Agriculture, 57(2), 123–134.

    Article  Google Scholar 

  • Mitchell, T. M. (1997). Machine Learning., McGraw-Hill Series in Computer Science New York, NY, USA: McGraw-Hill Science.

    Google Scholar 

  • Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., et al. (2005). Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using kohonen maps. Real Time Imaging Journal-Special Issue on spectral Imaging II, 11(2), 75–83.

    Article  Google Scholar 

  • Moshou, D., Bravo, C., Oberti, R., West, J. S., Ramon, H., Vougioukas, S., et al. (2011). Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosystems Engeneering, 108(4), 311–321.

    Article  Google Scholar 

  • Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., & Ramon, H. (2004). Automatic detection of”yellow rust“in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture, 44(3), 173–188.

    Article  Google Scholar 

  • Moshou, D., Ramon, H., & De Baerdemaeker, J. (2002). A weed species spectral detector based on neural networks. Precision Agriculture, 3(3), 209–223.

    Article  Google Scholar 

  • Mucherino, A., Papajorgji, P., & Paradalos, M. P. (2009). A survey of data mining techniques applied to agriculture. Operational Research, 9(2), 121–140.

    Article  Google Scholar 

  • Nieuwenhuizen, A. T., Tang, L., Hofstee, J. W., Müller, J., & Van Henten, E. J. (2007). Colour based detection of volunteer potatoes as weeds in sugar beet fields using machine vision. Precision Agriculture, 8(6), 267–278.

    Article  Google Scholar 

  • Oerke, E.-C., & Dehne, H.-W. (2004). Safeguarding production—losses in major crops and the role of crop protection. Crop Protection, 23, 275–285.

    Article  Google Scholar 

  • Oumar, Z., Mutanga, O., & Ismail, R. (2013). Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor. International Journal of Applied Earth Observation and Geoinformation, 21, 113–121.

    Article  Google Scholar 

  • Panneton, B., Guillaume, S., Roger, J.-M., & Samson, G. (2010). Improved discrimination between monocotyledonous and dicotyledonous plants for weed control based on the blue-green region of ultraviolet-induced fluorescence spectra. Applied Spectroscopy, 64(1), 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, D. T. (1995). Weeds in a changing climate. Weed Science, 43(4), 685–701.

    CAS  Google Scholar 

  • Perez, A. J., Lopez, F., Benlloch, J. V., & Christensen, S. (2000). Colour and shape analysis techniques for weed detection in cereal crops. Computers and Electronics in Agriculture, 25(3), 197–212.

    Article  Google Scholar 

  • Potamitis, I., Ganchev, T., Fakotakis, N. (2007). Automatic acoustic identification of crickets and cicadas. In: M. Al-Mualla (Ed.), Proceedings of the International Symposium of Signal Processing and Its Applications (ISSPA), IEEE, (pp. 1–4).

  • Prabhakar, M., Prasad, Y. G., Thirupathi, M., Sreedevi, G., Dharajothi, B., & Venkateswarlu, B. (2011). Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Computers and Electronics in Agriculture, 79(2), 189–198.

    Article  Google Scholar 

  • Pydipati, R., Burks, T. F., & Lee, W. S. (2005). Statistical and neural network classifiers for citrus disease detection using machine vision. Transactions of the ASAE, 48(5), 2007–2014.

    Article  Google Scholar 

  • Rakotomamonjy, A. (2003). Variable selection using SVM based criteria. The Journal of Machine Learning Research, 3, 1357–1370.

    Google Scholar 

  • Robnik-Šikonja, M., & Kononenko, I. (2003). Theoretical and empirical analysis of relief and relieff. Machine Learning, 53(1), 23–69.

    Article  Google Scholar 

  • Römer, C., Bürling, K., Hunsche, M., Rumpf, T., Noga, G., & Plümer, L. (2011). Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with support vector machines. Computers and Electronics in Agriculture, 79(2), 180–188.

    Article  Google Scholar 

  • Rosenblatt, F. (1962). Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Washington, DC, USA: Spartan.

    Google Scholar 

  • Rumpf, T., Mahlein, A. K., Steiner, U., Oerke, E. C., Dehne, H. W., & Plümer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 74(1), 91–99.

    Article  Google Scholar 

  • Rumpf, T., Römer, C., Weis, M., Sökefeld, M., Gerhards, R., & Plümer, L. (2012). Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Gallium aparine. Computers and Electronics in Agriculture, 80, 89–96.

    Article  Google Scholar 

  • Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507–2517.

    Article  CAS  PubMed  Google Scholar 

  • Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. Cambridge, MA, USA: MIT University Press.

    Google Scholar 

  • Setti, B., Bencheikh, M., Henni, J., & Neema, C. (2009). Comparative aggressiveness of Mycosphaerella pinodes on peas from different regions in western Algeria. Phytopathologia Mediterranea, 48(2), 195–204.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(379–423), 623–656.

    Article  Google Scholar 

  • Stafford, J. V. (2000). Implementing precision agriculture in the 21st Century. Journal of Agricultural Engineering Research, 76(3), 267–275.

    Article  Google Scholar 

  • Suzuki, K. (2011). Artificial neural networks—methodological advances and biomedical applications., InTech series of numerical analysis and scientific computing Rijeka, Croatia: InTech.

    Book  Google Scholar 

  • Suzuki, Y., Okamoto, H., & Kataoka, T. (2008). Image segmentation between crop and weed using hyperspectral imaging for weed detection in soybean field. Environmental Control Biology, 46(3), 163–173.

    Article  Google Scholar 

  • Tang, L., Tian, L., & Steward, B. L. (2000). Color image segmentation with genetic algorithm for in-field weed sensing. Transactions of the ASAE, 43(4), 1019–1027.

    Article  Google Scholar 

  • Thorp, K. R., & Tian, L. F. (2004). A review on remote sensing of weeds in agriculture. Precision Agriculture, 5(5), 477–508.

    Article  Google Scholar 

  • Timmermann, C., Gerhards, R., & Kühbauch, W. (2003). The economic impact of site-specific weed control. Precision Agriculture, 4(3), 249–260.

    Article  Google Scholar 

  • Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11), 1225–1231.

    Article  CAS  PubMed  Google Scholar 

  • Vinzi, V. E., Chin, W. W., Henseler, J., & Wang, H. (Eds.). (2010). Handbook of partial least squares: concepts, methods and applications., Springer Handbooks of Computational Statistics Berlin, Germany: Springer.

    Google Scholar 

  • Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(3), 328–339.

    Article  Google Scholar 

  • Wang, X., Zhang, M., Zhu, J., & Geng, S. (2008). Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN). International Journal of Remote Sensing, 29(6), 1693–1706.

    Article  Google Scholar 

  • Waske, B., van der Linden, S., Benediktsson, J. A., Rabe, A., & Hostert, P. (2010). Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 48(7), 2880–2889.

    Article  Google Scholar 

  • Wetterich, C.B., Kumar, R., Sankaran, S., Junior, J.B., Eshani, R., Marcassa, L.G. (2013). A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of Huanglongbing citrus disease in the USA and Brazil. Journal of Spectroscopy, Article ID 941738. 6 pages.

  • Witten, I. A., & Frank, E. (2005). Data mining: practical machine learning tools and techniques (2nd ed.)., The Morgan Kaufmann Series in Data Management Systems San Francisco, CA, USA: Morgan Kaufmann.

    Google Scholar 

  • Wu, D., Feng, L., Zhang, C., & He, Y. (2008). Early detection of Botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy. Transactions of the ASABE, 51(3), 1113–1139.

    Google Scholar 

  • Wu, L., & Wen, Y. (2009). Weed/corn seedling recognition by support vector machine using texture features. African Journal of Agricultural Research, 4, 840–846.

    Google Scholar 

  • Yang, C.-C., Prasher, S. O., Landry, J.-A., & Ramaswamy, H. S. (2003). Development of a herbicide application map using artificial neural networks and fuzzy logic. Agricultural Systems, 76(2), 561–574.

    Article  Google Scholar 

  • Zhang, M., & Meng, Q. (2011). Automatic citrus canker detection from leaf images captured in field. Pattern Recognition Letters, 32(15), 2036–2046.

    Article  Google Scholar 

  • Zhao, Y., He, Y., & Xu, X. (2012). A novel algorithm for damage recognition on pest-infested oilseed rape leaves. Computers and Electronics in Agriculture, 89, 41–50.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Heiner Goldbach for valuable comments and suggestions to improve the quality of this paper. This work was conducted within the Research Training Group 722 ‘Information Techniques for Precision Crop Protection’, funded by the German Research Foundation (DFG), and the Network of excellence in agriculture and nutrition research, CROP.SENSE.net funded by the German Federal Ministry of Education and Research (BMBF) (Funding code: 0315529). The authors further acknowledge the funding of the CROP.SENSe.net project in the context of Ziel 2-Programms NRW 2007–2013 “Regionale Wettbewerbsfähigkeit und Beschäftigung (EFRE)” under the aegis of the Ministry for Innovation, Science and Research (MIWF) of the North Rhine Westphalia (NRW) federal state as well as the receipt of European Union Funds for regional development (EFRE) (005-1103-0018) for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Behmann.

Additional information

Jan Behmann and Anne-Katrin Mahlein have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behmann, J., Mahlein, AK., Rumpf, T. et al. A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precision Agric 16, 239–260 (2015). https://doi.org/10.1007/s11119-014-9372-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-014-9372-7

Keywords

Navigation