Skip to main content

Advertisement

Log in

A systematic literature review of the factors affecting the precision agriculture adoption process

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

For agricultural industries to capture many environmental and economic benefits that have been demonstrated for precision agriculture (PA) technologies, an understanding of the factors affecting adoption of these technologies is required to adequately inform the development of PA approaches and the programs used to promote their use. A systematic review of the literature was undertaken to explore the processes of adoption of PA technologies, using an innovation diffusion framework to analyse the complex interactions between different factors in the adoption process. A total of 34 relevant publications were extracted from Scopus database following a systematic search and analysis process. PA technologies adoption research has predominantly been undertaken in the United States and Germany, with industrial crops receiving the most research attention. Relative advantage and motivation were the most frequently mentioned factors affecting PA technologies adoption. However, very few studies have examined multiple components of the complex adoption process, and most were narrowly focussed on assessing the impact of a single aspect. The conclusions drawn from the review are that many of the determinants of innovation diffusion that have been examined in other industry contexts were absent in the PA technologies adoption literature, and that the complexity and multidimensional nature of the adoption process was very poorly represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adekunle, I. O. (2013). Precision agriculture: Applicability and opportunities for Nigerian agriculture. Middle East Journal of Scientific Research, 13(9), 1230–1237.

    Google Scholar 

  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.

    Article  Google Scholar 

  • Anselmi, A. A., Bredemeier, C., Federizzi, L. C., & Molin, J. P. (2014). Factors related to adoption of precision agriculture technologies in southern Brazil, Retrieved March 12, 2018, from http://www.agriculturadeprecisao.org.br/upimg/publicacoes/pub_factors-related-to-adoption-of-precision-agriculture–technologies-in-southern-brazil–anselmi-a-a-c-bredemeier-federizzi-lc-molin-jp-icpa-2014-24-02-2016.pdf

  • Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: an empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems, 54(1), 510–520.

    Article  Google Scholar 

  • Bagheri, N., & Bordbar, M. (2014). Solutions for fast development of precision agriculture in Iran. Agricultural Engineering International: CIGR Journal, 16(3), 119–123.

    Google Scholar 

  • Batte, M. T., & Arnholt, M. W. (2003). Precision farming adoption and use in Ohio: Case studies of six leading-edge adopters. Computers and Electronics in Agriculture, 38(2), 125–139.

    Article  Google Scholar 

  • Binswanger, H. (1986). Agricultural mechanization: A comparative historical perspective. Research Observer, 1, 27–56.

    Article  Google Scholar 

  • Boyer, C. N., Lambert, D. M., Velandia, M., English, B. C., Roberts, R. K., Larson, J. A., et al. (2016). Cotton producer awareness and participation in cost-sharing programs for precision nutrient-management technology. Journal of Agricultural and Resource Economics, 41(1), 81–96.

    Google Scholar 

  • Busse, M., Doernberg, A., Siebert, R., Kuntosch, A., Schwerdtner, W., König, B., et al. (2014). Innovation mechanisms in German precision farming. Precision Agriculture, 15(4), 403–426.

    Article  Google Scholar 

  • Daberkow, S. G., & McBride, W. D. (2003). Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precision Agriculture, 4(2), 163–177.

    Article  Google Scholar 

  • Davis, F. D., Bogozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35, 982–1003.

    Article  Google Scholar 

  • Erickson, B., Lowenberg-DeBoer, J., & Bradford, J. (2017). 2017 precision agriculture dealership survey, Retrieved June 3, 2018, from http://agribusiness.purdue.edu/files/file/croplife-purdue-2017-precision-dealer-survey-report.pdf.

  • Fernandez-Cornejo, J., Jans, S., & Smith, M. (1998). Issues in the economics of pesticide use in agriculture: A review of the empirical evidence. Review of agricultural economics, 20, 462–488.

    Google Scholar 

  • Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., & Kyriakidou, O. (2004). Diffusion of innovations in service organizations: Systematic review and recommendations. Milbank Quarterly, 82(4), 581–629.

    Article  Google Scholar 

  • International Society of Precision Agriculture. (2018). Association seeks definitive definition of “precision agriculture”What’s your vote? Retrieved December 17, 2018, from https://www.precisionag.com/events/association-seeks-definitive-definition-of-precision-agriculture-whats-your-vote/

  • Knickel, K., Brunori, G., Rand, S., & Proost, J. (2009). Towards a better conceptual framework for innovation processes in agriculture and rural development: From linear models to systemic approaches. Journal of Agricultural Education and Extension, 15(2), 131–146.

    Article  Google Scholar 

  • Koschatzky, K., Baier, E., Kroll, H., & Stahlecker, T. (2009). The spatial multidimensionality of sectoral innovation: The case of information and communication technologies, Retrieved October 22, 2017, from https://www.econstor.eu/bitstream/10419/29327/1/611509202.pdf.

  • Kountios, G., Ragkos, A., Bournaris, T., Papadavid, G., & Michailidis, A. (2018). Educational needs and perceptions of the sustainability of precision agriculture: Survey evidence from Greece. Precision Agriculture, 19(3), 537–554.

    Article  Google Scholar 

  • Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture, 12(1), 2–17.

    Article  Google Scholar 

  • Lambert, D. M., Paudel, K. P., & Larson, J. A. (2015). Bundled adoption of precision agriculture technologies by cotton producers. Journal of Agricultural and Resource Economics, 40(2), 325–345.

    Google Scholar 

  • Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31(2), 247–264.

    Article  Google Scholar 

  • Markley, J., & Hughes, J. (2014). Understanding the barriers to the implementation of precision agriculture in the central region. International Sugar Journal, 116(1384), 278–285.

    Google Scholar 

  • Paustian, M., & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture, 18(5), 701–716.

    Article  Google Scholar 

  • Paxton, K. W., Mishra, A. K., Chintawar, S., Roberts, R. K., Larson, J. A., English, B. C., et al. (2011). Intensity of precision agriculture technology adoption by cotton producers. Agricultural and Resource Economics Review, 40(1), 133–144.

    Article  Google Scholar 

  • Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology, 8, 61–69.

    Article  Google Scholar 

  • Robertson, M. J., Llewellyn, R. S., Mandel, R., Lawes, R., Bramley, R. G. V., Swift, L., et al. (2012). Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precision Agriculture, 13(2), 181–199.

    Article  Google Scholar 

  • Rogers, E. M. (1983). Diffusion of Innovations (3rd ed.). New York: Free Press.

    Google Scholar 

  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.

    Google Scholar 

  • Stoate, C., Boatman, N. D., Borralho, R. J., Carvalho, C. R., De Snoo, G. R., & Eden, P. (2001). Ecological impacts of arable intensification in Europe. Journal of Environmental Management, 63(4), 337–365.

    Article  CAS  Google Scholar 

  • Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implication. Precision Agriculture, 13, 713–730.

    Article  Google Scholar 

  • Umbers, A., Watson, P., & Watson, D. (2015). Farm Practices Survey Report 2015, Retrieved June 3, 2018, from https://grdc.com.au/__data/assets/pdf_file/0025/230749/grdc-farm-practices-survey-2015.pdf.pdf.

  • Wejnert, B. (2002). Integrating models of diffusion of innovations: A conceptual framework. Annual Review of Sociology, 28, 297–326.

    Article  Google Scholar 

  • Wright, R. W., Brand, R. A., Dunn, W., & Spindler, K. P. (2007). How to write a systematic review. Clinical Orthopaedics and Related Research, 455, 23–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Sharan Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: details of selected publications

Appendix: details of selected publications

Year

Authors

Publication

Country

PA technologies

Industry

2018

Kountios, G.

Ragkos, A.

Bournaris, T.

Papadavid, G.

Michailidis, A.

Precision Agriculture, vol. 19: 537–554

Greece

Variable rate technology

Remote sensing

Geographical information systems

Multiple (Cotton, cereal, vegetables, arboriculture)

2018

Tamirat, T. W.

Pedersen, S. M.

Lind, K. M.

Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, vol. 68: 349–357

Denmark

Germany

Auto guidance

Not mentioned

2017

Paustian, M.

Theuvsen, L.

Precision agriculture, vol. 18: 701–716

Germany

Not mentioned

Multiple (Wheat, barley, rye, oilseed, corn, feeding crops)

2016

Keskin, M.

Sekerli, Y. E.

Agronomy Research, vol. 14: 1307–1320

Turkey

Geographic information systems

Remote sensing

Multiple (Grain, vegetable, industrial crop, fruit)

2016

Boyer, C. N.

Lambert, D. M.

Velandia, M.

English, B. C.

Roberts, R. K.

Larson, J. A.

Larkin, S. L.

Paudel, K. P.

Reeves, J. M

Journal of Agricultural and Resource Economics, vol. 41: 81–96

US

Variable rate technology

Geo-referenced precision soil sampling

Cotton

2016

Schimmelpfennig, D.

Ebel, R.

Journal of Agricultural and Resource Economics, vol. 41: 97–115

US

Yield monitor

Yield map

Variable rate technology

Grain

2015

Lambert, D. M.

Paudel, K. P.

Larson, J. A.

Journal of Agricultural and Resource Economics, vol. 40: 325–345

US

Bundled of Yield monitors and grid soil sampling

Bundle of aerial, satellite imagery, handheld devices with GPS and soil survey maps

Cotton

2014

Lambert, D. M.

English, B. C.

Harper, D. C.

Larkin, S. L.

Larson, J. A.

Mooney, D. F.

Roberts, R. K.

Velandia, M.

Reeves, J. M.

Journal of Agricultural and Resource Economics, vol. 39: 106–123

US

Geo-referenced soil testing

Cotton

2014

Bagheri, N.

Bordbar, M.

Agricultural Engineering International: CIGR Journal, vol. 16: 119–123

Iran

Not mentioned

Not mentioned

2014

Lencses, E. Takacs, I. Takacs-Gyorgy, K.

Sustainability, vol. 6: 8452–8465

Hungary

Auto-guidance

Not mentioned

2014

Busse, M.

Doernberg, A.

Siebert, R.

Kuntosch, A.

Schwerdtner, W.

Konig, B.

Bokelmann, W.

Precision Agriculture, vol. 15: 403–426

Germany

Yield mapping

GPS based soil sampling

Not mentioned

2014

Watcharaanantapong, P.

Roberts, R. K.

Lambert, D. M.

Larson, J. A.

Velandia, M.

English, B. C.

Rejesus, R. M.

Wang, C.

Precision Agriculture, vol. 15: 427–446

US

Remote sensing

Yield monitor

Grid soil sampling

Cotton

2014

Markley, J.

Hughes, J.

International Sugar Journal, vol. 116: 278–285

Australia

Variable rate technology

Satellite imagery

Sugarcane

2013

Adekunle, I. O.

Middle East Journal of Scientific Research, vol. 13: 1230–1237

Nigeria

Yield mapping

Remote sensing

Multiple (Grain, vegetable, industrial crop, fruit, grape, oleaginous)

2012

Robertson, M. J.

Llewellyn, R. S.

Mandel, R.

Lawes, R.

Bramley, R. G. V.

Swift, L.

Metz, N.

O’Callaghan, C.

Precision Agriculture, vol. 13: 181–199

Australia

Variable rate technology

Yield mapping

Grain

2012

D’Antoni, J. M.

Mishra, A. K.

Joo, H.

Computers and Electronics in Agriculture, vol. 87: 121–128

US

Autosteer

Cotton

2012

Aubert, B. A. Schroeder, A. Grimaudo, J.

Decision Support Systems, vol. 54: 510–520

Canada

Yield monitor

Geographic information systems

Remote sensing

Multiple (Cereal and oleaginous)

2011

Silva, C. B.

De Moraes, M. A. F. D.

Molin, J. P.

Precision Agriculture, vol. 12: 67–81

Brazil

Satellite imagery

Aerial photography

Auto-guidance

Sugarcane

2011

Kutter, T. Tiemann, S. Siebert, R. Fountas, S.

Precision Agriculture, vol. 12: 2–17

Multiple locations (Czech Republic, Denmark and Greece)

Yield mapping

Auto-guidance

Soil sampling

Grain

2011

Paxton, K. W.

Mishra, A. K.

Chintawar, S.

Roberts, R. K.

Larson, J. A.

English, B. C.

Lambert, D. M.

Marra, M. C.

Larkin, S. L.

Reeves, J. M.

Martin, S. W.

Agricultural and Resource Economics Review, vol. 40: 133–144

US

Not mentioned

Cotton

2011

Lawson, L. G. Pedersen, S. M. Sorensen, C. G. Pesonen, L. Fountas, S. Werner, A. Oudshoorn, F. W. Herold, L. Chatzinikos, T. Kirketerp, I. M. Blackmore, S.

Computers and Electronics in Agriculture, vol. 77: 7–20

Multiple locations (Denmark, Finland, Germany and Greece)

Auto-guidance

Grid soil sampling

Multiple (Vegetable, industrial crop, cereal, livestock)

2010

Walton, J. C.

Roberts, R. K. Lambert, D. M.

Larson, J. A.

English, B. C.

Larkin, S. L.

Martin, S. W.

Marra, M. C.

Paxton, K. W.

Reeves, J. M.

Precision Agriculture, vol. 11: 135–147

US

Grid soil sampling Variable rate technology

Cotton

2009

Reichardt, M.

Jurgens, C.

Precision Agriculture, vol. 10: 73–94

Germany

GPS based soil sampling

Yield mapping

Variable rate technology

Not mentioned

2009

Reichardt, M.

Jurgens, C.

Kloble, U.

Hüter, J.

Moser, K.

Precision Agriculture, vol. 10: 525–545

Germany

GPS based soil sampling

Yield mapping

Not mentioned

2008

Torbett, J. C.

Roberts, R. K.

Larson, J. A.

English, B. C.

Computers and Electronics in Agriculture, vol. 64: 140–148

US

Grid soil sampling

Yield monitor

Remote sensing

Cotton

2008

Larson, J. A.

Roberts, R. K.

English, B. C.

Larkin, S. L.,

Marra, M. C.

Martin, S. W.

Paxton, K. W.

Reeves, J. M.

Precision Agriculture, vol. 9: 195–208

US

Remote sensing

Variable rate technology

Cotton

2008

Isgin, T.

Bilgic, A.

Forster, D. L.

Batte, M. T.

Computers and Electronics in Agriculture, vol. 62: 231–242

US

Yield monitor

Variable rate technology

Grid soil sampling

Not mentioned

2008

Walton, J. C.

Lambert, D. M.

Roberts, R. K.

Larson, J. A.

English, B. C.

Larkin, S. L.

Martin, S. W.

Marra, M. C.

Paxton, K. W.

Reeves, J. M.

Journal of Agricultural and Resource Economics, vol. 33: 428–448

US

Variable rate technology

Soil sampling

Cotton

2007

Jochinke, D. C.

Noonon, B. J.

Wachsmann, N. G.

Norton, R. M.

Field Crops Research, vol. 104: 68–76

Australia

Yield monitor

Autosteer

Aerial photography

Not mentioned

2007

Nganje, W. E.

Friedrichsen, M. S.

Gustafson, C. R.

McKee, G.

Agricultural finance review, vol. 67: 295–310

US

Variable rate technology

Multiple (Grain, vegetable, oleaginous)

2005

Adrin, A. M. Norwood, S. H. Mask, P. L.

Computers and Electronics in Agriculture, vol. 48: 256–271

US

Yield monitor

Remote sensing

Grid soil sampling

Not mentioned

2004

Pedersen, S. M.

Fountas, S.

Blackmore, B. S.

Gylling, M.

Pedersen, J. L.

Acta Agriculturae Scandinavica Section B: Soil and Plant Science, vol. 54: 2–8

Denmark

Yield mapping

Variable rate technology

Multiple (Grain and oleaginous)

2003

Daberkow, S. G.

McBride, W. D.

Precision Agriculture, vol. 4: 163–177

US

Not mentioned

Grain and oilseed

2003

Batte, M. T.

Arnholt, M. W.

Computers and Electronics in Agriculture, vol. 38: 125–139

US

Yield monitor

Variable rate technology

Grid soil sampling

Grain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, H.S., Brown, P. & Best, T. A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agric 20, 1292–1316 (2019). https://doi.org/10.1007/s11119-019-09653-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-019-09653-x

Keywords

Navigation