Skip to main content
Log in

Energetics and kinetics of photosynthetic water oxidation studied by photothermal beam deflection (PBD) experiments

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Determination of thermodynamic parameters of water oxidation at the photosystem II (PSII) manganese complex is a major challenge. Photothermal beam deflection (PBD) spectroscopy determines enthalpy changes (ΔH) and apparent volume changes which are coupled with electron transfer in the S-state cycle (Krivanek R, Dau H, Haumann M (2008) Biophys J 94: 1890–1903). Recent PBD results on formation of the Q A /Y •+Z radical pair suggest a value of ΔH similar to the free energy change, ΔG, of −540 ± 40 meV previously determined by the analysis of recombination fluorescence, but presently the uncertainty range of ΔH values determined by PBD is still high (±250 meV). In the oxygen-evolving transition, S3 → S0, the enthalpy change may be close to zero. A prominent non-thermal signal is associated with both Q A /Y •+Z formation (<1 μs) and the S3 → S0 transition (~1 ms). The observed (apparent) volume expansion (ΔV of about +40 Å3 per PSII unit) in the S3 → S0 transition seems to revert, at least partially, the contractions on lower S-transitions and may also comprise contributions from O2 and proton release. The observed volume changes show that the S3 → S0 transition is accompanied by significant nuclear movements, which likely are of importance with respect to energetics and mechanism of photosynthetic water oxidation. Detailed PBD studies on all S-transitions will contribute to the progress in PSII research by providing insights not accessible by other spectroscopic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCP:

Bromocresol-purple (5′,5″-dibromo-o-cresolsulfophthalein)

Chl:

Chlorophyll

cw:

continuous wave

DCBQ:

2,6-Dichloro-p-benzoquinone

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethyl-urea

ET:

Electron transfer

FWHM:

Full width at half-maximum

PBD:

Photothermal beam deflection

PSII:

Photosystem II

S i :

Oxidation states in the S-state cycle of PSII

YZ :

Tyr-161 of the D1 subunit of PSII

References

  • Arata H, Parson WW (1981) Enthalpy and volume changes accompanying electron transfer from P-870 to quinones in Rhodopseudomonas sphaeroides reaction centers. Biochim Biophys Acta 636:70–81. doi:10.1016/0005-2728(81)90077-3

    Article  CAS  PubMed  Google Scholar 

  • Barry BA (1995) Tyrosyl radicals in photosystem II. Methods Enzymol 258:303–319. doi:10.1016/0076-6879(95)58053-0

    Article  CAS  PubMed  Google Scholar 

  • Bialkowski S (1996) Photothermal spectroscopy methods for chemical analysis. Wiley, New York

    Google Scholar 

  • Boichenko VA, Hou JM, Mauzerall D (2001) Thermodynamics of electron transfer in oxygenic photosynthetic reaction centers: volume change, enthalpy, and entropy of electron-transfer reactions in the intact cells of the cyanobacterium Synechocystis PCC 6803. Biochemistry 40:7126–7132. doi:10.1021/bi010374k

    Article  CAS  PubMed  Google Scholar 

  • Braslavsky SE (1986) Photoacoustic and photothermal methods applied to the study of radiationless deactivation processes in biological systems and in substances of biological interest. Photochem Photobiol 43:667–675. doi:10.1111/j.1751-1097.1986.tb05645.x

    Article  CAS  PubMed  Google Scholar 

  • Braslavsky SE, Heibel GE (1992) Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem Rev 92:1381–1410. doi:10.1021/cr00014a007

    Article  CAS  Google Scholar 

  • Buchta J, Grabolle M, Dau H (2007) Photosynthetic dioxygen formation studied by time-resolved delayed fluorescence measurements—method, rationale, and results on the activation energy of dioxygen formation. Biochim Biophys Acta 1767:565–574. doi:10.1016/j.bbabio.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  • Bults G, Horwitz BA, Malkin S, Cahen D (1982) Photo-acoustic measurements of photosynthetic activities in whole leaves—photochemistry and gas-exchange. Biochim Biophys Acta 679:452–465. doi:10.1016/0005-2728(82)90167-0

    Article  CAS  Google Scholar 

  • Callis JB, Parson WW, Gouterman M (1972) Fast changes of enthalpy and volume on flash excitation of Chromatium chromatophores. Biochim Biophys Acta 267:348–362. doi:10.1016/0005-2728(72)90122-3

    Article  CAS  PubMed  Google Scholar 

  • Dau H, Canaani O (1992) Short-term adaptation of higher plants to changing light intensities and evidence for the involvement of phosphorylation of the light harvesting chlorophyll a/b protein complex of photosystem II. Photochem Photobiol 55:873–885. doi:10.1111/j.1751-1097.1992.tb08536.x

    Article  CAS  Google Scholar 

  • Dau H, Hansen UP (1989) Studies on the adaptation of intact leaves to changing light intensities by a kinetic analysis of chlorophyll fluorescence and oxygen evolution as measured by the photoacoustic signal. Photosynth Res 20:59–83. doi:10.1007/BF00028622

    Article  CAS  Google Scholar 

  • Dau H, Hansen UP (1990) A study on the energy-dependent quenching of chlorophyll fluorescence by means of photoacoustic measurements. Photosynth Res 25:269–278. doi:10.1007/BF00033168

    Article  CAS  Google Scholar 

  • Dau H, Haumann M (2007) Eight steps preceding O–O bond formation in oxygenic photosynthesis—a basic reaction cycle of the Photosystem II manganese complex. Biochim Biophys Acta 1767:472–483. doi:10.1016/j.bbabio.2007.02.022

    Article  CAS  PubMed  Google Scholar 

  • Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle—Basic framework and possible realization at the atomic level. Coord Chem Rev 252:273–295. doi:10.1016/j.ccr.2007.09.001

    Article  CAS  Google Scholar 

  • Dau H, Sauer K (1991) Electric field effect on chlorophyll fluorescence and its relation to photosystem II charge separation reactions studied by a salt-jump technique. Biochim Biophys Acta 1098:49–60. doi:10.1016/0005-2728(91)90008-C

    Article  CAS  Google Scholar 

  • Dau H, Sauer K (1992) Electric field effect on the picosecond fluorescence of photosystem II and its relation to the energetics and kinetics of primary charge separation. Biochim Biophys Acta 1102:91–106. doi:10.1016/0005-2728(92)90069-E

    Article  CAS  Google Scholar 

  • Delosme R (2003) On some aspects of photosynthesis revealed by photoacoustic studies: a critical evaluation. Photosynth Res 76:289–301. doi:10.1023/A:1024977623828

    Article  CAS  PubMed  Google Scholar 

  • Diner BA, Babcock GT (1996) Structure, dynamics, and energy conversion efficiency in photosystem II. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publisher, Dordrecht, pp 213–247

    Google Scholar 

  • Falvey DE (1997) Photothermal beam deflection calorimetry in solution photochemistry: recent progress and future prospects. Photochem Photobiol 65:4–9. doi:10.1111/j.1751-1097.1997.tb01870.x

    Article  CAS  PubMed  Google Scholar 

  • Fork DC, Herbert SK (1993) The application of photoacoustic techniques to studies of photosynthesis. Photochem Photobiol 57:207–220. doi:10.1111/j.1751-1097.1993.tb02277.x

    Article  CAS  Google Scholar 

  • Gaied I, Amara A, Yacoubi N, Ghrib T (2008) Effect of beam sizes on the amplitude and phase of photothermal deflection signals for both uniform and nonuniform heating. Appl Opt 47:1054–1062. doi:10.1364/AO.47.001054

    Article  PubMed  Google Scholar 

  • Gensch T, Viappiani C (2003) Time-resolved photothermal methods: accessing time-resolved thermodynamics of photoinduced processes in chemistry and biology. Photochem Photobiol Sci 2:699–721. doi:10.1039/b303177b

    Article  CAS  PubMed  Google Scholar 

  • Grabolle M, Dau H (2005) Energetics of primary and secondary electron transfer in photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. Biochim Biophys Acta 1708:209–218. doi:10.1016/j.bbabio.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  • Haumann M, Junge W (1994) Extent and rate of proton release by photosynthetic water oxidation in thylakoids: electrostatic relaxation versus chemical production. Biochemistry 33:864–872. doi:10.1021/bi00170a003

    Article  CAS  PubMed  Google Scholar 

  • Haumann M, Bögershausen O, Cherepanov D, Ahlbrink R, Junge W (1997) Photosynthetic oxygen evolution: H/D isotope effects and the coupling between electron and proton transfer during the redox reactions at the oxidizing side of photosystem II. Photosynth Res 51:193–208. doi:10.1023/A:1005861917596

    Article  CAS  Google Scholar 

  • Haumann M, Liebisch P, Muller C, Barra M, Grabolle M, Dau H (2005) Photosynthetic O2 formation tracked by time-resolved x-ray experiments. Science 310:1019–1021. doi:10.1126/science.1117551

    Article  CAS  PubMed  Google Scholar 

  • Haumann M, Grundmeier A, Zaharieva I, Dau H (2008) Photosynthetic water oxidation at elevated dioxygen partial pressure monitored by time-resolved X-ray absorption measurements. Proc Natl Acad Sci USA 105:17384–17389. doi:10.1073/pnas.0802596105

    Article  CAS  PubMed  Google Scholar 

  • Hou HJ, Mauzerall D (2006) The A-Fx to F(A/B) step in Synechocystis 6803 photosystem I is entropy driven. J Am Chem Soc 128:1580–1586. doi:10.1021/ja054870y

    Article  CAS  PubMed  Google Scholar 

  • Hou JM, Boichenko VA, Diner BA, Mauzerall D (2001) Thermodynamics of electron transfer in oxygenic photosynthetic reaction centers: volume change, enthalpy, and entropy of electron-transfer reactions in manganese-depleted photosystem II core complexes. Biochemistry 40:7117–7125. doi:10.1021/bi010373s

    Article  CAS  PubMed  Google Scholar 

  • Iuzzolino L, Dittmer J, Dörner W, Meyer-Klaucke W, Dau H (1998) X-ray absorption spectroscopy on layered photosystem II membrane particles suggests manganese-centered oxidation of the oxygen-evolving complex for the S0–S1, S1–S2, and S2–S3 transitions of the water oxidation cycle. Biochemistry 37:17112–17119. doi:10.1021/bi9817360

    Article  CAS  PubMed  Google Scholar 

  • Junge W, Haumann M, Ahlbrink R, Mulkidjanian A, Clausen J (2002) Electrostatics and proton transfer in photosynthetic water oxidation. Philos Trans R Soc Lond B 357:1407–1418

    Article  CAS  Google Scholar 

  • Krieger A, Rutherford AW, Johnson GN (1995) On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in photosystem II. Biochim Biophys Acta 1229:193–201. doi:10.1016/0005-2728(95)00002-Z

    Article  Google Scholar 

  • Krivanek R, Dau H, Haumann M (2008) Enthalpy changes during photosynthetic water oxidation tracked by time-resolved calorimetry using a photothermal beam deflection technique. Biophys J 94:1890–1903. doi:10.1529/biophysj.107.117085

    Article  CAS  PubMed  Google Scholar 

  • Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970. doi:10.1039/b506923h

    Article  CAS  PubMed  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735. doi:10.1073/pnas.0603395103

    Article  CAS  PubMed  Google Scholar 

  • Magnuson A, Frapart Y, Abrahamsson M, Horner O, Åkermark B, Sun L, Girerd JJ, Hammarström L, Styring S (1999) A biomimetic model system for the water oxidizing triad in photosystem II. J Am Chem Soc 121:89–96. doi:10.1021/ja981494r

    Article  CAS  Google Scholar 

  • Mauzerall D, Hou JM, Boichenko VA (2002) Volume changes and electrostriction in the primary photoreactions of various photosynthetic systems: estimation of dielectric coefficient in bacterial reaction centers and of the observed volume changes with the Drude–Nernst equation. Photosynth Res 74:173–180. doi:10.1023/A:1020903525973

    Article  CAS  PubMed  Google Scholar 

  • McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483. doi:10.1021/cr0204294

    Article  CAS  PubMed  Google Scholar 

  • Michler I, Braslavsky SE (2001) Time-resolved thermodynamic analysis of the oat phytochrome A phototransformation. A photothermal beam deflection study. Photochem Photobiol 74:624–635. doi:10.1562/0031-8655(2001)074<0624:TRTAOT>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Poulet P, Cahen D, Malkin S (1983) Photo-acoustic detection of photosynthetic oxygen evolution from leaves—quantitative-analysis by phase and amplitude measurements. Biochim Biophys Acta 724:433–446. doi:10.1016/0005-2728(83)90104-4

    Article  CAS  Google Scholar 

  • Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II. Coord Chem Rev 252:259–272. doi:10.1016/j.ccr.2007.07.016

    Article  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in Photosystem II. Biochemistry 41:8518–8527. doi:10.1021/bi025725p

    Article  CAS  PubMed  Google Scholar 

  • Renger G, Hanssum B (1992) Studies on the reaction coordinates of the water oxidase in PS II membrane fragments from spinach. FEBS Lett 299:28–32. doi:10.1016/0014-5793(92)80092-U

    Article  CAS  PubMed  Google Scholar 

  • Renger G, Renger T (2008) Photosystem II: the machinery of photosynthetic water splitting. Photosynth Res 98:53–80. doi:10.1007/s11120-008-9345-7

    Article  CAS  PubMed  Google Scholar 

  • Schulenberg PJ, Gärtner W, Braslavsky SE (1995) Time-resolved volume changes during the bacteriorhodopsin photocycle: a photothermal beam deflection study. J Phys Chem 99:9617–9624. doi:10.1021/j100023a046

    Article  CAS  Google Scholar 

  • Siegbahn PE (2008) A structure-consistent mechanism for dioxygen formation in photosystem II. Chemistry 14:8290–8302

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Hammarström L, Åkermark B, Styring S (2001) Towards artificial photosynthesis: ruthenium-manganese chemistry for energy production. Chem Soc Rev 30:36–49. doi:10.1039/a801490f

    Article  CAS  Google Scholar 

  • Vargaftik NB, Vinogradov YK, Yargin VS (1996) Handbook of physical properties of liquids and gases: pure substances and mixtures. Begell House, Redding, CI

    Google Scholar 

  • Witt HT (1996) Primary reactions of oxygenic photosynthesis. Ber Bunsenges Phys Chem 100:1923–1942

    CAS  Google Scholar 

Download references

Acknowledgment

Financial support by the Volkswagen-Foundation (grant I/77-575) and the European Union (SOLAR-H2 consortium, FP7 contract 212508) is gratefully acknowledged. We thank Monika Fünning for skillful preparation of PSII membrane particles.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Holger Dau or Michael Haumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klauss, A., Krivanek, R., Dau, H. et al. Energetics and kinetics of photosynthetic water oxidation studied by photothermal beam deflection (PBD) experiments. Photosynth Res 102, 499–509 (2009). https://doi.org/10.1007/s11120-009-9417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9417-3

Keywords

Navigation