Skip to main content
Log in

The effect of support type on the activity of zeolite supported iron catalysts for the decomposition of ammonia

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic decomposition of ammonia was studied over zeolite supported iron catalysts regarding the hot gas cleaning requirements of coal/biomass to liquid processes. Catalysts were prepared on different zeolite frameworks (HZY, HZβ and HZSM5 with SiO2 to Al2O3 ratios of 5.2, 38 and 280) and tested. Brighter grains in the SEM images of Fe/HZSM5 catalyst were noticed to be the iron aggregates on the external surface. Any indicative brighter grains were not detected in the SEM images of Fe/HZβ and Fe/HZY catalyst meaning that iron might be dispersed well and attached to the aluminum sites. The FeOx cluster size was considered to be dependent on the textural properties of the zeolites. The absence of α-iron (bcc) phase on the Fe/HZY catalyst upon reduction was interpreted as the strong interaction of iron with the aluminum sites of HZY. This interaction might provide the stabilization of FeO phase by preventing its further transformation to metallic iron. The reduction of stabilized FeO to metallic iron on Fe/HZY catalyst upon reaction seemed to involve a reaction between iron oxides and non-framework aluminum species like Al(OH)2+, Al(OH) +2 , AlO+, AlOOH etc. leading to iron aluminate (FeAl2O4)-like clusters. The highest activity over the Fe/HZβ catalyst might be due to the better hydrothermal stability of zeolite Hβ compared to zeolite HY regarding their aluminum contents. The role of the zeolite was probably to maintain good dispersion of active iron clusters without considering support effect on N–H bond breaking. Therefore, the best coordination environment for active iron species and improved iron cluster interactions can be ensured over zeolite Hβ framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kurkela E, Stahlberg P (1992) Fuel Process Technol 31:23–32

    Article  CAS  Google Scholar 

  2. Wang W, Padban N, Ye Z, Andersson A, Bjerle I (1999) Ind Eng Chem Res 38:4175–4182

    Article  CAS  Google Scholar 

  3. Rönkkönen H, Simell P, Reinikainen M, Krause O, Niemela MV (2010) Fuel 89:3272–3277

    Article  Google Scholar 

  4. Hongrapipat J, Saw WL, Pang S (2012) Biomass Convers Biorefin 2(4):327–348

    Article  CAS  Google Scholar 

  5. Xu CC, Donald J, Byambajav E, Ohtsuka Y (2010) Fuel 89:1784–1795

    Article  CAS  Google Scholar 

  6. Corella J, Toledo JM, Padilla R (2005) Ind Eng Chem Res 44:2036–2045

    Article  CAS  Google Scholar 

  7. Pinto F, Lopes H, Andre RN, Gulyurtlu I, Cabrita I (2007) Fuel 86:2052–2063

    Article  CAS  Google Scholar 

  8. Björkman E (1991) Energy Fuels 5:753–760

    Article  Google Scholar 

  9. Leppalahti J, Simell P, Kurkela E (1991) Fuel Process Technol 29:43–56

    Article  CAS  Google Scholar 

  10. Simell PA, Hepola JO, Krasue AOI (1997) Fuel 76(12):1117–1127

    Article  CAS  Google Scholar 

  11. Choudhary TV, Sivadinarayana C, Goodman DW (2001) Catal Lett 72(3–4):197–201

    Article  CAS  Google Scholar 

  12. Yin SF, Xu BQ, Zhou XP, Au CT (2004) Appl Catal A 277:1–9

    Article  CAS  Google Scholar 

  13. Dou B, Zhang M, Gao J, Shen W, Sha X (2002) Ind Eng Chem Res 41:4195–4200

    Article  CAS  Google Scholar 

  14. Pansare SS, Torres W, Goodwin JG Jr (2007) Catal Commun 8:649–654

    Article  CAS  Google Scholar 

  15. Leppalahti J (1993) Bioresour Technol 46:65–70

    Article  CAS  Google Scholar 

  16. Mojtahedi W, Ylitalo M, Maunula T, Abbasian J (1995) Fuel Process Technol 45:221–236

    Article  CAS  Google Scholar 

  17. Yasushi S, Yoshiharu M (2008) EP 1 872 852 A1

  18. Torres W, Pansare SS, Goodwin JG Jr (2007) Catal Rev 49(4):407–456

    Article  CAS  Google Scholar 

  19. Zheng W, Zhang J, Xu H (2007) Catal Lett 119:311–318

    Article  CAS  Google Scholar 

  20. Ohtsuka Y, Xu C, Kong D, Tsubouchi N (2004) Fuel 83:685–692

    Article  CAS  Google Scholar 

  21. Donald J, Xu CC, Hashimoto H, Byambajav E, Ohtsuka Y (2010) Appl Catal A 375:124–133

    Article  CAS  Google Scholar 

  22. Simell P, Kurkela E, Stahlberg P, Hepola J (1996) Catal Today 27(1–2):55–62

    Article  CAS  Google Scholar 

  23. Tsubouchi N, Hashimoto H, Ohtsuka Y (2005) Catal Lett 105(3–4):203–208

    Article  CAS  Google Scholar 

  24. Xu C, Tsubouchi N, Hashimoto H, Ohtsuka Y (2005) Fuel 84:1957–1967

    Article  CAS  Google Scholar 

  25. Liu H (2013) Ammonia synthesis catalysts: innovation and practice, Chapter 1, World Scientific, p 16. http://www.worldscientific.com/doi/pdf/10.1142/9789814355780_fmatter

  26. Li XK, Ji WJ, Zhao J, Wang SJ, Au CT (2005) J Catal 236:181–189

    Article  CAS  Google Scholar 

  27. Liu H, Wang H, Shen J, Sun İ, Liu H (2008) Catal Today 131:444–449

    Article  CAS  Google Scholar 

  28. Hashimoto K, Toukai N (2000) J Mol Catal A 161:171–178

    Article  CAS  Google Scholar 

  29. Chen J, Zhu ZH, Wang S, Ma Q, Rudolph V, Lu GQ (2010) Chem Eng J 156:404–410

    Article  CAS  Google Scholar 

  30. Baranak M, Gürünlü B, Sarıoğlan A, Ataç Ö, Atakül H (2013) Catal Today 207:57–64

    Article  CAS  Google Scholar 

  31. Storck S, Bretinger H, Maier WF (1998) Appl Catal A 174:137–146

    Article  CAS  Google Scholar 

  32. Huang Z, Su JF, Guo YH, Su XQ, Teng LJ (2009) Chem Eng Commun 196:969–986

    Article  CAS  Google Scholar 

  33. Raul FL (2005) In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology, 1st edn. Marcel Dekker, Inc., NewYork

    Google Scholar 

  34. Van Ness DJS (2010) Ph.D. thesis, UMI Number: 3433620:3. (http://gradworks.umi.com/34/33/3433620.html)

  35. Eliana Misi SE, Ramli A, Rahman FH (2011) J Appl Sci 11(8):1297–1302

    Google Scholar 

  36. Kazansky VB (1988) Catal Today 3:367–372

    Article  Google Scholar 

  37. Ren-Yuan T, Su Z, Chengyu W, Dongbai L, Liwu L (1987) J Catal 106:440–448

    Article  Google Scholar 

  38. Strongin DR, Somorjai GA (1991) In: Jennings JR (ed) Catalytic ammonia synthesis: fundementals and practice, 1991st edn. Springer, New York

    Google Scholar 

  39. Hansgen DA, Vlachos DG, Chen JG (2010) Nat Chem 2:484–489

    Article  CAS  Google Scholar 

  40. Lee HT, Rhee HK (1999) Catal Lett 61:71–76

    Article  CAS  Google Scholar 

  41. Yuen S, Chen Y, Kubsh JE, Dumesic JA, Topsoe N, Topsoe H (1982) J Phys Chem 86:3022–3032

    Article  CAS  Google Scholar 

  42. Lobree LJ, Hwang IC, Reimer JA, Bell AT (1999) J Catal 186:242–253

    Article  CAS  Google Scholar 

  43. Dong H, Xie M, Xu J, Li M, Peng L, Guo X, Ding W (2011) Chem Commun 47(13):4019–4021

    Article  CAS  Google Scholar 

  44. Park JY, Lee YJ, Khanna PK, Jun KW, Bae JW, Kim YH (2010) J Mol Catal A 323:84–90

    Article  CAS  Google Scholar 

  45. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford. ISBN 0080379419

    Google Scholar 

  46. Li G, Pidko EA, Santen RAV, Li C, Hensen EJM (2012) J Phys Chem 117:413–426

    Google Scholar 

  47. Guo W, Vlachos DG (2015) Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nat Commun. doi:10.1038/ncomms9619

    Google Scholar 

  48. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) Appl Catal B 102:441–448

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge to “The Scientific and Technological Research Council of Turkey (TÜBİTAK)” for supporting of “Liquid Fuel Production from Biomass and Coal Blends” project (Contract Code: 108G043) in which this study was carried out. The authors would also like to thank the State Planning Organization of Turkey for their laboratory infrastructure funding (Project: Excellency Center for Gas Technologies, 5112101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeliz Durak-Çetin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durak-Çetin, Y., Sarıoğlan, Ş., Sarıoğlan, A. et al. The effect of support type on the activity of zeolite supported iron catalysts for the decomposition of ammonia. Reac Kinet Mech Cat 118, 683–699 (2016). https://doi.org/10.1007/s11144-016-0981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-0981-1

Keywords

Navigation