Skip to main content
Log in

Slag Corrosion and Penetration Behaviors of MgAl2O4 and Al2O3 Based Refractories

  • Published:
Refractories and Industrial Ceramics Aims and scope

The slag corrosion and penetration behaviors of MgAl2O4, MgAl2O4–ZrO2, MgAl2O4–ZrO2–CaO, Al2O3, and Al2O3–ZrO2–SiC refractories were investigated using the static crucible method at 1873 K for 2 h. The above refractories all displayed excellent slag corrosion resistance, and their corrosion depth was less than 1.10 mm. Al2O3 material was hardly corroded by the molten slag, and its corrosion depth was only 0.05 mm. Their penetration depth ranged from 13.79 to 24.48 mm. Among them, Al2O3–ZrO2–SiC refractories displayed good slag penetration resistance with a penetration depth of 13.79 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Q. Zhu, Y. N. Zhu, X. C. Li, and F. Zhao, “Effect of ceramic bonding phases on the thermo-mechanical properties of Al2O3–C refractories,” Ceram. Int., 39(6), 6069 – 6076 (2013).

    Article  Google Scholar 

  2. Q. H. Wang, Y. W. Li, M. Luo, S. B. Sang, T. B. Zhu, and L. Zhao, “Strengthening mechanism of grapheme oxide nanosheets for Al2O3-C refractories,” Ceram. Int., 40(1), 163 – 172 (2014).

    Article  Google Scholar 

  3. B. Y. Ma, Q. Zhu, Y. Sun, J. K. Yu, and Y. Li, “Synthesis of Al2O3-SiC composite and its effect on the properties of low-carbon MgO–C refractories,” J. Mater. Sci. Technol., 26(8), 715 – 720 (2010).

    Article  Google Scholar 

  4. I. Ganesh, S. Bhattacharjee, B. P. Saha, R. Johnson, and Y. R. Mahajan, “A new sintering aid for magnesium aluminate spinel,” Ceram. Int., 27(7), 773 – 779 (2001).

    Article  Google Scholar 

  5. B. Y. Ma, Y. Li, Q. Zhu, G. Q. Liu, and J. K. Yu, “Preparation and properties of low-carbon Al2O3–ZrO2–SiC–C composite refractories containing LaAl11O18 ceramic phase,” Refract. Ind. Ceram., accepted (2014).

  6. I. Gómez, M. Hernández, J. Aguilar, and M. Hinojosa, “Comparative study of microwave and conventional processing of MgAl2O4-based materials,” Ceram. Int., 30(6), 893 – 900 (2004).

    Article  Google Scholar 

  7. Z. I. Zaki, N. Y. Mostafa, and M. M. Rashad, “High pressure synthesis of magnesium aluminate composites with MoSi2 and Mo5Si3 in a self-sustaining manner,” Ceram. Int., 38(6), 5231 – 5237 (2012).

    Article  Google Scholar 

  8. B. Y. Ma, Y. Li, S. G. Cui, and Y. C. Zhai, “Preparation and sintering properties of zirconia-mullite-corundum composites using fly ash and zircon,” T. Nonferrous Met. Soc., 20(12), 2331 – 2335 (2010).

    Article  Google Scholar 

  9. R. Naghizadeh, H. R. Rezaie, and F. Golestani-Fard, “Effect of TiO2 on phase evolution and microstructure of MgAl2O4 spinel in different atmospheres,” Ceram. Int., 37(1), 349 – 354 (2011).

    Article  Google Scholar 

  10. B. Sahin and C. Aksel, “Developments on the mechanical properties of MgO-MgAl2O4 composite refractories by ZrSiO4 – 3 mol% Y2O3 addition,” J. Eur. Ceram. Soc., 32(1), 49 – 57 (2012).

    Article  Google Scholar 

  11. C. Aksel and T. Aksoy, “Improvements on the thermal shock behaviour of MgO-spinel composite refractories by incorporation of zircon-3 mol% Y2O3,” Ceram. Int., 38(5), 3673 – 3681 (2012).

    Article  Google Scholar 

  12. H. S. Tripathi, S. Singla, and A. Ghosh, “Synthesis and densification behaviour of magnesium aluminate spinel: Effect of Dy2O3,” Ceram. Int., 2009, 35(6), 2541 – 2544 (2009).

    Google Scholar 

  13. B. Fernández, J. M. Almanza, J. L. Rodríguez, D. A. Cortes, J. C. Escobedo, and E. J. Gutiérrez, “Corrosion mechanisms of Al2O3/MgAl2O4 by V2O5, NiO, Fe2O3 and vanadium slag,” Ceram. Int., 37(8), 2973 – 2979 (2011).

    Article  Google Scholar 

  14. M. K. Cho, G. G. Hong, and S. K. Lee, “Corrosion of spinel clinker by CaO–Al2O3–SiO2 ladle slag,” J. Eur. Ceram. Soc., 22(11), 1783 – 1790 (2002).

    Article  Google Scholar 

  15. J. Berjonneau, P. Prigent, and J. Poirier, “The development of a thermodynamic model for Al2O3–MgO refractory castable corrosion by secondary metallurgy steel ladle slags,” Ceram. Int., 35(2), 623 – 635 (2009).

    Article  Google Scholar 

  16. B. A. Vázquez, P. Pena, A. H. de Aza, M. A. Sainz, and A. Caballero, “Corrosion mechanism of polycrystalline corundum and calcium hexaluminate by calcium silicate slags,” J. Eur. Ceram. Soc., 29(8), 1347 – 1360 (2009).

    Article  Google Scholar 

  17. B. Y. Ma, Q. Zhu, Y. Sun, J. K. Yu, and Y. Li, “Influences of commercial SiC and Al2O3-SiC synthesized from clay on the slag resistance of corundum material,” Adv. Mater. Res., 146 – 147, 526 – 529 (2011).

    Article  Google Scholar 

  18. Z. Y. Chen, “Chemical Thermodynamics of Refractories (in Chin.)”, 1st ed., Metallurgical Industry Press, Beijing, 2005.

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. N120402006), the open fund for the State Key Laboratory of Refractories and Metallurgy (Wuhan University of Science and Technology) (No. G201402), the National Natural Science Foundation of China (No. 51474057), and the National High-tech R&D Program (863 Program) of China (No. 2013AA030902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beiyue Ma or Ying Li.

Additional information

Translated from Novye Ogneupory, No. 9, pp. 38 – 44, September 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Yin, Y., Zhu, Q. et al. Slag Corrosion and Penetration Behaviors of MgAl2O4 and Al2O3 Based Refractories. Refract Ind Ceram 56, 494–501 (2016). https://doi.org/10.1007/s11148-016-9876-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-016-9876-y

Keywords

Navigation