Skip to main content
Log in

Preparation of TiO2 nanofibers immobilized on quartz substrate by electrospinning for photocatalytic degradation of ranitidine

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The photocatalytic activity of TiO2 nanofibers immobilized on quartz substrates was investigated by evaluating the decomposition of organic pollutants. TiO2 nanofibers were synthesized by electrospinning the Ti-precursor/polymer mixture solution, followed by hot-pressing for enhancing the adhesion of TiO2-nanofiber films to the substrates. TiO2 started to crystalize in the anatase form at 500 °C and reached the optimal photocatalytic anatase/rutile phase ratio of 70:30 at a calcination temperature of 600 °C. The TiO2-nanofiber film was demonstrated to be an efficient photocatalyst by ranitidine decomposition under UV illumination and was proven to have a comparable photocatalytic activity with the well-known Degussa P25 nanoparticulate photocatalyst and excellent recyclability during 10 cycles of photocatalytic operation, indicating no loss of TiO2 nanofibers during photocatalytic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  CAS  Google Scholar 

  2. A. Fujishima, X. Zang, D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008)

    Article  CAS  Google Scholar 

  3. K. Onozuka, B. Ding, Y. Tsuge, T. Naka, M. Yamazaki, S. Sugi, S. Ohno, M. Yoshikawa, S. Shiratori, Nanotechnology 17, 1026 (2006)

    Article  CAS  Google Scholar 

  4. T. Paul, P.L. Miller, T.J. Strathmann, Environ. Sci. Technol. 41, 4720 (2007)

    Article  CAS  Google Scholar 

  5. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)

    Article  CAS  Google Scholar 

  6. Z.Y. Yuan, W. Zhou, B.L. Su, Chem. Commun. 11, 1202 (2002)

    Article  Google Scholar 

  7. C.C. Tsai, H. Teng, Chem. Mat. 16, 4352 (2004)

    Article  CAS  Google Scholar 

  8. A.K. Alves, F.A. Berutti, F.J. Clemens, T. Graule, C.P. Bergmann, Mater. Res. Bull. 44, 312 (2009)

    Article  CAS  Google Scholar 

  9. S. Kim, S.K. Lim, Appl. Catal. B: Environ. 84, 16 (2008)

    Article  CAS  Google Scholar 

  10. E. Santala, M. Kemell, M. Leskelä, M. Ritala, Nanotechnology 20, 035602 (2009)

    Article  Google Scholar 

  11. B. Trouiller, R. Reliene, A. Westbrook, P. Solaimani, R.H. Schiestl, Cancer Res. 69, 8784 (2009)

    Article  CAS  Google Scholar 

  12. E. Formo, E. Lee, D. Campbell, Y. Xia, Nano Lett. 8, 668 (2008)

    Article  CAS  Google Scholar 

  13. Y.J. Yoon, K.S. Park, J.H. Heo, J.G. Park, S. Nahm, K.J. Choi, J. Mater. Chem. 20, 2386 (2010)

    Article  CAS  Google Scholar 

  14. Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, J.H. Lee, Nanotechnology 19, 095508 (2008)

    Article  Google Scholar 

  15. M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi, J.G. Park, Sens. Actuator B: Chem. 138, 168 (2009)

    Article  Google Scholar 

  16. M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K.J. Choi, J.H. Lee, S.H. Hong, Appl. Phys. Lett. 93, 263103 (2008)

    Article  Google Scholar 

  17. M. Soini, I. Zardo, E. Uccelli, S. Funk, G. Koblmüller, A.Fi. Morral, G. Abstreiter, Appl. Phys. Lett. 97, 263107 (2010)

    Article  Google Scholar 

  18. A.L. Briseno, P. Yang, Nat. Mater. 8, 7 (2009)

    Article  CAS  Google Scholar 

  19. D.W. Kim, I.S. Hwang, S.J. Kwon, H.Y. Kang, K.S. Park, Y.J. Choi, K.J. Choi, J.G. Park, Nano Lett. 7, 3041 (2007)

    Article  CAS  Google Scholar 

  20. J.X. Huang, R.B. Kaner, J. Am. Chem. Soc. 126, 851 (2004)

    Article  CAS  Google Scholar 

  21. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003)

    Article  CAS  Google Scholar 

  22. D. Li, Y.N. Xia, Nano Lett. 3, 555 (2003)

    Article  CAS  Google Scholar 

  23. D.H. Reneker, I. Chun, Nanotechnology 7, 216 (1996)

    Article  CAS  Google Scholar 

  24. S.J. Doh, C. Kim, S.G. Lee, S.J. Lee, H. Kim, J. Hazard. Mater. 154, 118 (2008)

    Article  CAS  Google Scholar 

  25. J.K. Burdett, T. Hughbanks, G.J. Miller, J.W.J. Richardson, J.V. Smith, J. Am. Chem. Soc. 109, 3639 (1987)

    Article  CAS  Google Scholar 

  26. R.A. Spurr, H. Myers, Anal. Chem. 29, 760 (1957)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by the Korea Ministry of Environment as a “Converging Technology Project” (191-101-001) and by a KIST project (2E22173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, K.J., Hong, S.W. Preparation of TiO2 nanofibers immobilized on quartz substrate by electrospinning for photocatalytic degradation of ranitidine. Res Chem Intermed 38, 1161–1169 (2012). https://doi.org/10.1007/s11164-011-0455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0455-z

Keywords

Navigation