Skip to main content

Advertisement

Log in

Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanoporous carbons which possess high surface areas and narrow pore size distributions have become one of the most important classes of porous materials with potential to be utilized for hydrogen storage. In recent times, several metal–organic frameworks (MOFs) have been shown to be promising precursors for creating nanoporous carbons due to their high surface areas and tunable pore sizes. The pore structure and surface area of the resultant carbon materials can be tuned simply by changing the calcination temperature. In this work, a zinc-based MOF (MOF-5) and a chromium-based MOF (Cr-MOF) were both used as precursors for syntheses of nanoporous carbons by the direct carbonization technique at different temperatures. The resultant carbon nanostructure from MOF-5 possessed higher surface area, higher pore volume and enhanced hydrogen storage capacity as compared to pristine MOF. Meanwhile, the derived carbons from Cr-MOF displayed lower surface areas, pore volumes and hydrogen uptake than the parent MOF due to the formation of chromium oxide and carbide species in the pores of the Cr-MOF-derived carbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Sandrock, A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compd. 293, 877–888 (1999)

    Article  Google Scholar 

  2. L. Schlapbach, Technology, hydrogen-fuelled vehicles. Nature 460, 809–811 (2009)

    Article  CAS  Google Scholar 

  3. O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003)

    Article  CAS  Google Scholar 

  4. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe et al., Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)

    Article  CAS  Google Scholar 

  5. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)

    Article  Google Scholar 

  6. N. Takeichi, H. Senoh, T. Yokota, H. Tsuruta, K. Hamada, H.T. Takeshita et al., “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material. Int. J. Hydrog. Energy 28, 1121–1129 (2003)

    CAS  Google Scholar 

  7. S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung et al., MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. Mater. 24, 464–470 (2012)

    Article  CAS  Google Scholar 

  8. H. Reardon, J.M. Hanlon, R.W. Hughes, A. Godula-Jopek, T.K. Mandal, D.H. Gregory, Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design. Energy Environ. Sci. 5, 5951–5979 (2012)

    Article  CAS  Google Scholar 

  9. M. Rose, B. Böhringer, M. Jolly, R. Fischer, S. Kaskel, MOF processing by electrospinning for functional textiles. Adv. Eng. Mater. 13, 356–360 (2011)

    Article  CAS  Google Scholar 

  10. T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda, S. Kitagawa, Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem. Int. Ed. 48, 4739–4743 (2009)

    Article  CAS  Google Scholar 

  11. Q. Yang, W. Xu, A. Tomita, T. Kyotani, The template synthesis of double coaxial carbon nanotubes with nitrogen-doped and boron-doped multiwalls. J. Am. Chem. Soc. 127, 8956–8957 (2005)

    Article  CAS  Google Scholar 

  12. J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa et al., Thermal conversion of core-shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015)

    Article  CAS  Google Scholar 

  13. V. Malgras, Q. Ji, Y. Kamachi, T. Mori, F. Shieh, K.C. Wu et al., Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn 88, 1171–1200 (2015)

    Article  CAS  Google Scholar 

  14. C. Journet, W. Maser, P. Bernier, A. Loiseau, M.L. de La Chapelle, D.L.S. Lefrant et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997)

    Article  CAS  Google Scholar 

  15. B. Zheng, C. Lu, G. Gu, A. Makarovski, G. Finkelstein, J. Liu, Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett. 2, 895–898 (2002)

    Article  CAS  Google Scholar 

  16. A. Ahmadpour, D. Do, The preparation of active carbons from coal by chemical and physical activation. Carbon 34, 471–479 (1996)

    Article  CAS  Google Scholar 

  17. B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008)

    Article  CAS  Google Scholar 

  18. J. Ren, D.E. Rogers, T. Segakweng, H.W. Langmi, B.C. North, M. Mathe et al., Thermal treatment induced transition from Zn3(OH)2 (BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5). Int. J. Mat. Res. 105, 89–93 (2014)

    Article  CAS  Google Scholar 

  19. J. Ren, N.M. Musyoka, H.W. Langmi, T. Segakweng, B.C. North, M. Mathe et al., Modulated synthesis of chromium-based metal-organic framework (MIL-101) with enhanced hydrogen uptake. Int. J. Hydrog. Energy 39, 12018–12023 (2014)

    Article  CAS  Google Scholar 

  20. M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q. Ji, P. Srinivasu et al., Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 134, 2864–2867 (2012)

    Article  CAS  Google Scholar 

  21. T. Düeren, F. Millange, G. Férey, K.S. Walton, R.Q. Snurr, Calculating geometric surface areas as a characterization tool for metal-organic frameworks. J. Phys. Chem. 111, 15350–15356 (2007)

    Google Scholar 

Download references

Acknowledgments

The financial support from the South African Department of Science and Technology (DST) towards HySA Infrastructure KP4 (grant no.: HTC004X) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianwei Ren or Philip Crouse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segakweng, T., Musyoka, N.M., Ren, J. et al. Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application. Res Chem Intermed 42, 4951–4961 (2016). https://doi.org/10.1007/s11164-015-2338-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2338-1

Keywords

Navigation