Skip to main content
Log in

The study of wet etching on GaN surface by potassium hydroxide solution

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Potassium hydroxide solution was used to etch un-doped GaN grown on the sapphire substrate at 180 and 260 °C. We illustrated the etching phenomenon in detail and probed its mechanism in the wet etching process. By multiplying the planar density and the number of dangling bonds on the N atom, we proposed the etching barrier index (EBI) to describe the difficulty degree of each lattice facet. The raking of EBI will be +c-plane > a-plane > m-plane > −c-plane > (10-1-1) plane > r-plane. Combining the EBI with SEM results, we thoroughly studied the whole etching process. We confirmed that in our research, KOH wet etching on GaN starts from the r-plane instead of the +c-plane or −c-plane, which differs from other studies. We also found that during the high-temperature etching process, there are two etching approaches. In one, the etching begins vertically from the top to the bottom, then horizontally, and finally reversely from the bottom to the top. In the other, etching pits will develop into a hexagonal hole of the sidewall of m-plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Nakamura, G. Fasol, The Blue Laser Diode—GaN Based Light Emitters and Lasers (Springer, New York, 1997), pp. 7–9

    Google Scholar 

  2. R.J. Shul, G.B. McClellan, S.A. Casalnuovo, D.J. Rieger, S.J. Pearton, C. Constantine, C. Barratt, R.F. Karlicek Jr, C. Tran, M. Schurman, Appl. Phys. Lett. 69, 1119 (1996)

    Article  CAS  Google Scholar 

  3. I. Waki, M. Iza, J.S. Speck, S.P. DenBaars, S. Nakamura, Jpn. J. Appl. Phys. 45(2A), 720–723 (2006)

    Article  CAS  Google Scholar 

  4. I. Adesida, A. Mahajan, E. Andideh, M.A. Khan, D. Olsen, J. Kuznia, Appl. Phys. Lett. 63, 20 (1993)

    Article  Google Scholar 

  5. F. Ren, J. Lothian, S. Pearton, C. Abernahty, C. Vartuli, J. MacKenzie, R. Wilson, R. Karlicek, J. Electron. Mater. 26, 11 (1997)

    Article  Google Scholar 

  6. J. Mileham, S. Pearton, C. Abernathy, J. MacKenzie, R. Shul, S. Kilcoyne, J. Vac. Sci. Technol. A 14, 3 (1996)

    Article  Google Scholar 

  7. M. Hoseinpoor, A. Davoodi, Res. Chem. Intermed. 41, 4255–4272 (2015)

    Article  CAS  Google Scholar 

  8. H.-C. Hsu, Y.-K. Su, S.-H. Cheng, S.-J. Huang, J.-M. Cao, K.-C. Chen, Appl. Surf. Sci. 257, 3 (2010)

    Article  Google Scholar 

  9. H.H. Jeong, S.Y. Lee, K.K. Choi, J.-O. Song, J.-H. Lee, T.-Y. Seong, Microelectron. Eng. 88, 10 (2011)

    Google Scholar 

  10. C.-Y. Lee, Y.-P. Lan, P.-M. Tu, S.-C. Hsu, C.-C. Lin, H.-C. Kuo, G.-C. Chi, C.-Y. Chang, Appl. Phys. Exp. 7, 4 (2014)

    Google Scholar 

  11. S. Hsu, C. Liu, Electrochem. Solid State Lett. 9(5), G171–G173 (2006)

    Article  CAS  Google Scholar 

  12. S.-C. Hsu, L.-L. Chen, C.-L. Lin, D.-J. Lin, Res. Chem. Intermed. 40, 6 (2014)

    Google Scholar 

  13. C.-F. Lin, J.-J. Dai, G.-M. Wang, M.-S. Lin, Appl. Phys. Exp. 3(9), 092101 (2010)

    Article  Google Scholar 

  14. M.S. Lin, C.F. Lin, W.C. Huang, G.M. Wang, B.C. Shieh, J.J. Dai, S.Y. Chang, D. Wuu, P.L. Liu, R.H. Horng, Appl. Phys. Exp. 4(6), 062101 (2011)

    Article  Google Scholar 

  15. D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, Y. Fukuda, J. Appl. Phys. 90, 8 (2001)

    Google Scholar 

  16. H.M. Ng, W. Parz, N.G. Weimann, A. Chowdhury, Jpn. J. Appl. Phys. 42, 12A (2003)

    Article  Google Scholar 

  17. M. Minsky, M. White, E. Hu, Appl. Phys. Lett. 68, 11 (1996)

    Article  Google Scholar 

  18. C. Youtsey, I. Adesida, G. Bulman, Appl. Phys. Lett. 71, 15 (1997)

    Article  Google Scholar 

  19. L.-H. Peng, C.-W. Chuang, J.-K. Ho, C. Huang, C. Chen, Appl. Phys. Lett. 72, 8 (1998)

    Google Scholar 

  20. D. Stocker, E. Schubert, J. Redwing, Appl. Phys. Lett. 73, 18 (1998)

    Google Scholar 

  21. P. Visconti, D. Huang, M. Reshchikov, F. Yun, R. Cingolani, D. Smith, J. Jasinski, W. Swider, Z. Liliental-Weber, H. Morkoc, Mater. Sci. Eng. B 93, 1 (2002)

    Article  Google Scholar 

  22. M. Itoh, T. Kinoshita, C. Koike, M. Takeuchi, K. Kawasaki, Y. Aoyagi, Jpn. J. Appl. Phys. 45, 5R (2006)

    Google Scholar 

  23. K.H. Baik, H.-Y. Song, S.-M. Hwang, Y. Jung, J. Ahn, J. Kim, J. Electrochem. Soc. 158(4), D196–D199 (2011)

    Article  CAS  Google Scholar 

  24. C. Youtsey, L. Romano, I. Adesida, Appl. Phys. Lett. 73, 6 (1998)

    Article  Google Scholar 

  25. T. Fujii, Y. Gao, R. Sharma, E. Hu, S. DenBaars, S. Nakamura, Appl. Phys. Lett. 84, 6 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Science and Technology of the Republic of China under Grant 101-2623-E-032-002-ET, 102-2623-E-032-001-ET. We also deeply appreciate Ms. Ssu-Han Chao’s assistance on typesetting and drawing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Chieh Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, YY., Hsu, SC., Chang, HS. et al. The study of wet etching on GaN surface by potassium hydroxide solution. Res Chem Intermed 43, 3563–3572 (2017). https://doi.org/10.1007/s11164-016-2430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2430-1

Keywords

Navigation