Skip to main content

Advertisement

Log in

Supporting Students’ Learning and Socioscientific Reasoning About Climate Change—the Effect of Computer-Based Concept Mapping Scaffolds

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Climate change is one of the most challenging problems facing today’s global society (e.g., IPCC 2013). While climate change is a widely covered topic in the media, and abundant information is made available through the internet, the causes and consequences of climate change in its full complexity are difficult for individuals, especially non-scientists, to grasp. Science education is a field which can play a crucial role in fostering meaningful education of students to become climate literate citizens (e.g., NOAA 2009; Schreiner et al., 41, 3–50, 2005). If students are, at some point, to participate in societal discussions about the sustainable development of our planet, their learning with respect to such issues needs to be supported. This includes the ability to think critically, to cope with complex scientific evidence, which is often subject to ongoing inquiry, and to reach informed decisions on the basis of factual information as well as values-based considerations. The study presented in this paper focused on efforts to advance students in (1) their conceptual understanding about climate change and (2) their socioscientific reasoning and decision making regarding socioscientific issues in general. Although there is evidence that “knowledge” does not guarantee pro-environmental behavior (e.g. Schreiner et al., 41, 3–50, 2005; Skamp et al., 97(2), 191–217, 2013), conceptual, interdisciplinary understanding of climate change is an important prerequisite to change individuals’ attitudes towards climate change and thus to eventually foster climate literate citizens (e.g., Clark et al. 2013). In order to foster conceptual understanding and socioscientific reasoning, a computer-based learning environment with an embedded concept mapping tool was utilized to support senior high school students’ learning about climate change and possible solution strategies. The evaluation of the effect of different concept mapping scaffolds focused on the quality of student-generated concept maps, as well as on students’ test performance with respect to conceptual knowledge as well as socioscientific reasoning and socioscientific decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Throughout the manuscript, we will refer to this treatment group as the “lines-provided” treatment condition. With “lines-provided” we understand “labelled lines-provided.” The same holds for the “concepts- and lines-provided” treatment condition.

References

  • American Association for the Advancement of Science (AAAS). (1989). Science for all Americans, Project 2061. New York: Oxford University.

    Google Scholar 

  • Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model: fundamental measurement in the human sciences. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Brandstädter, K., Harms, U., & Großschedl, J. (2012). Assessing systems thinking through different concept-mapping practices. International Journal of Science Education, 34(14), 2147–2170.

    Article  Google Scholar 

  • Bybee, R. W. (1997). Achieving scientific literacy: from purposes to practices. Portsmouth, NH: Heinemann.

    Google Scholar 

  • Chang, K. E., Sung, Y. T., & Chen, S. F. (2001). Learning through computer-based concept mapping with scaffolding aid. Journal of Computer Assisted Learning, 17, 21–33.

    Article  Google Scholar 

  • Clark, D., Ranney, M. A., & Felipe, J. (2013). Knowledge helps: mechanistic information and numeric evidence as cognitive levers to overcome stasis and build public consensus on climate change. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (pp. 2070–2075). Austin, TX: Cognitive Science Society

  • Colucci-Gray, L., Camino, E., Barbero, G., & Gray, D. (2005). From scientific literacy to sustainability literacy: an ecological framework for education. Science Education, 90, 227–252.

    Article  Google Scholar 

  • Dawson, V. (2012). Science teachers’ perspectives about climate change. Teaching Science, 58(3), 8–13.

    Google Scholar 

  • Den Elzen Rump, V., & Leutner, D. (2007). Naturwissenschaftliche Sachtexte verstehen - Ein computerbasiertes Trainingsprogramm für Schüler der 10. Jahrgangsstufe zum selbstregulierten Lernen mit einer Mapping-Strategie (Science text comprehension – A computer-based training program for students in 10th grade for self-regulated learning with a mapping strategy). In M. Landmann (Ed.), Selbstregulation erfolgreich fördern: Praxisnahe Trainingsprogramme für effektives Lernen (Fostering successful self-regulation. Practical training programs for effective learning) (pp. 251–268). Stuttgart: Kohlhammer.

  • Department for Education (2014). The national curriculum in England. Key stages 3 and 4 framework document. Retrieved August 18, 2014 from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/330327/SECONDARY_national_curriculum_FINAL_140714.pdf.

  • Dillenbourg, P. (2002). Over-scripting CSCL: the risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL. Can we support CSCL? (pp. 61–91). Heerlen: Open Universiteit Nederland.

    Google Scholar 

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.

    Article  Google Scholar 

  • Eggert, S. & Bögeholz, S. (2010). Students’ use of decision making strategies with regard to socioscientific issues-an application of the Rasch partial credit model. Science Education, 94, 230–258.

  • Eggert, S., Ostermeyer, F., Hasselhorn, M., & Bögeholz, S. (2013). Socioscientific decision making in the science classroom: the effect of embedded metacognitive instructions on students’ learning outcomes. Education Research International. doi:10.1155/2013/309894.

  • Grace, M. (2009). Developing high quality decision-making discussions about biological conservation in a normal classroom setting. International Journal of Science Education, 31(4), 551–570.

    Article  Google Scholar 

  • Hauser, S., Nückles, M., & Renkl, A. (2006). Supporting concept mapping for learning from text. In S. Barab, K. Hay, & D. Hickey (Eds.), Proceedings of the 7th International Conference of the Learning Sciences (pp. 243–249). Mahwah, NJ: Erlbaum.

  • Hilbert, T., & Renkl, A. (2008). Concept mapping as a follow-up strategy to learning from texts: what characterizes good and poor mappers? Instructional Science, 36, 53–73.

    Article  Google Scholar 

  • Hilbert, T. S., Nückles, M., Renkl, A., Minarik, C., Reich, A., & Ruhe, K. (2008). Concept Mapping zum Lernen aus Texten: Können Prompts den Wissens- und Strategieerwerb fördern? [concept mapping as a follow-up strategy for learning from texts: can the acquisition of knowledge and skills be fostered by prompts?] Zeitschrift für Pädagogische Psychologie, 22, 119–125.

  • Horton, P. B., McConney, A. A., Gallo, M., Woods, A. L., Senn, G. J., & Hamelin, D. (1993). An investigation of the effectiveness of concept mapping as an instructional tool. Science Education, 77, 95–111.

    Article  Google Scholar 

  • IPCC (2013). Summary for policy makers. In T.F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University.

  • Jimenez-Aleixandre, M. P., & Pereiro-Munoz, C. (2002). Knowledge consumers or knowledge producers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171–1190.

    Article  Google Scholar 

  • Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38(1), 23–31.

    Article  Google Scholar 

  • Khishfe, R., & Lederman, N. (2006). Teaching nature of science within a controversial topic: integrated versus nonintegrated. Journal of Research in Science Teaching, 43(4), 395–418.

    Article  Google Scholar 

  • Kintsch, W. (1998). Comprehension: a paradigm for cognition. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Klosterman, M. L., & Sadler, T. D. (2010). Multi-level assessment of scientific content knowledge gains associated with socioscientific issues-based instruction. International Journal of Science Education, 32(8), 1017–1043.

    Article  Google Scholar 

  • KMK-BMZ (2007). Orientierungsrahmen für den Lernbereich Globale Entwicklung im Rahmen einer Bildung für Nachhaltige Entwicklung (A framework for global learning within education for sustainable development). Retrieved November 6, 2015 from http://www.eineweltfueralle.de/fileadmin/user_upload/Materialsammlung/Lernbereich/orientierungsrahmen-globaleentwicklung.pdf.

  • Kolsto, S. D. (2001). Scientific literacy for citizenship: tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85, 291–310.

    Article  Google Scholar 

  • Kolsto, S. D. (2006). Patterns in students’ argumentation confronted with a risk-focused socio-scientific issue. International Journal of Science Education, 28(14), 1689–1716.

    Article  Google Scholar 

  • Leopold, C., den Elzen-Rump, V., & Leutner, D. (2006). Selbstreguliertes Lernen aus Sachtexten (Self-regulated learning from science texts). In M. Prenzel & L. Allolio-Näcke (Eds.), Untersuchungen zur Bildungsqualität von Schule. Abschlussbericht des DFG-Schwerpunktprogramms (Studies on the educational quality of schools. The final report on the DFG Priority Programme) (pp. 268–288). Waxmann: Münster.

  • Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (2009). Climate literacy: essential principles of climate science. Resource document: NOAA. Retrieved August 4, 2014 from http://www.climate.noaa.gov/education/.

  • National Research Council. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: National Academies.

    Google Scholar 

  • Nesbit, J. C., & Adesope, O. O. (2006). Learning with concept and knowledge maps: a meta-analysis. Review of Educational Research, 76, 413–448.

    Article  Google Scholar 

  • Novak, J. D. (1990). Concept mapping: a useful tool for science education. Journal of Research in Science Teaching, 27, 937–949.

    Article  Google Scholar 

  • Novak, J. D. (1995). Concept maps to facilitate teaching and learning. Prospects, 25, 95–111.

    Article  Google Scholar 

  • Novak, J. D., & Cañas, A. J. (2006). The theory underlying concept maps and how to construct and use them. Technical Report IHMC CmapTools 2006–01. Florida: Institute for Human and Machine Cognition

  • Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge University.

    Book  Google Scholar 

  • Nussbaum, E. M., & Schraw, G. (2007). Promoting argument–counterargument integration in students’ writing. Journal of Experimental Education, 76(1), 59–92.

    Article  Google Scholar 

  • O’Donnell, A. M., Dansereau, D. F., & Hall, R. H. (2002). Knowledge maps as scaffolds for cognitive processing. Educational Psychology Review, 14, 71–86.

    Article  Google Scholar 

  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argument in school science. Journal of Research in Science Teaching, 41(10), 994–1020.

    Article  Google Scholar 

  • Ottander, C., & Ekborg, M. (2012). Students’ experience of working with socioscientific issues—a quantitative study in secondary school. Research in Science Education, 42, 1147–1163.

    Article  Google Scholar 

  • Oulton, C., Dillon, J., & Grace, M. M. (2004). Reconceptualizing the teaching of controversial issues. International Journal of Science Education, 26(4), 411–423.

    Article  Google Scholar 

  • Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. (2006). Chemie im Kontext—a symbiotic implementation of a context based teaching and learning approach. International Journal of Science Education, 28(9), 1041–1062.

    Article  Google Scholar 

  • Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. Journal of the Learning Sciences, 13(3), 423–451.

    Article  Google Scholar 

  • Ratcliffe, M., & Grace, M. (2003). Science education for citizenship. Teaching socio-scientific issues. Maidenhead: Open University.

    Google Scholar 

  • Reader, W., & Hammond, N. (1994). Computer-based tools to support learning from hypertext: concept mapping tools and beyond. Computers in Education, 22, 99–106.

    Article  Google Scholar 

  • Renkl, A. (2005). The worked-out example principle in multimedia learning. In R. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 229–246). Cambridge, UK: Cambridge University.

    Chapter  Google Scholar 

  • Rickels, W., Klepper, G., Dovern, J., Betz, G., Brachatzek, N., Cacean, S., Güssow, K., Heintzenberg J., Hiller, S., Hoose, C., Leisner, T., Oschlies, A., Platt, U., Proelß, A., Renn, O., Schäfer, S., & Zürn, M. (2011). Gezielte Eingriffe in das Klima? Eine Bestandsaufnahme der Debatte zu Climate Engineering. Sondierungsstudie für das Bundesministerium für Bildung und Forschung (Targeted climate interventions? An inventory of the debate on climate engineering. Exploratory study for the Federal Ministry of Education and Research). Retrieved November 6, 2015 from https://www.fona.de/mediathek/pdf/Bestandsaufnahme_Debatte_Climate_Engineering_de.pdf.

  • Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33(6), 569–600.

    Article  Google Scholar 

  • Ruiz-Primo, M. A., Shavelson, R. J., Li, M., & Schultz, S. E. (2001). On the validity of cognitive interpretations of scores from alternative concept-mapping techniques. Educational Assessment, 7(2), 99–141.

    Article  Google Scholar 

  • Sadler, T. (2011). Socio-scientific issues in the classroom: teaching, learning and research. New York: Springer.

    Book  Google Scholar 

  • Sadler, T., Barab, S., & Scott, B. (2007). What do students gain by engaging in socio-scientific inquiry? Research in Science Education, 37, 371–391.

    Article  Google Scholar 

  • Schmid, R. E., & Telaro, G. (1990). Concept mapping as an instructional strategy for high school biology. Journal of Educational Research, 84, 78–85.

    Article  Google Scholar 

  • Schmitz, A. (2006). Interessen- und Wissensentwicklung bei Schülerinnen und Schülern der Sek II in außerschulischer Lernumgebung am Beispiel von NaT-Working Meeresforschung (The development of interest and knowledge in upper secondary school students in extracurricular learning environments using the example of NaT-Working Marine Research). Dissertation: Christian–Albrecht–Universität Kiel.

  • Schreiner, C., Henriksen, E. K., & Kirkeby Hansen, P. J. (2005). Climate education: empowering today’s youth to meet tomorrow’s challenges. Studies in Science Education, 41, 3–50.

    Article  Google Scholar 

  • Skamp, K., Boyes, E., & Stanisstreet, M. (2013). Beliefs and willingness to act about global warming: where to focus science pedagogy? Science Education, 97(2), 191–217.

    Article  Google Scholar 

  • Taddicken, M., & Neverla, I. (2011). Klimawandel aus Sicht der Mediennutzer. Multifaktorielles Wirkungsmodell der Medienerfahrung zur komplexen Wissensdomäne Klimawandel (Climate change from the perspective of media users. Multifactorial effect model of media experience with respect to the complex knowledge domain of climate change). Medien & Kommunikationswissenschaft (Media & Communication Studies), 59(4), 505–525.

  • Toth, E., Suthers, D. D., & Lesgold, A. M. (2002). “Mapping to know”: the effects of representational guidance and reflective assessment on scientific inquiry. Science Education, 86, 264–286.

    Article  Google Scholar 

  • Venville, G. J., & Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students’ argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47(8), 952–977.

    Google Scholar 

  • Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29, 1387–1410.

    Article  Google Scholar 

  • West, L. H. T., Fensham, P. J., & Garrard, J. E. (1985). Describing the cognitive structures of learners following instruction in chemistry. In L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change (pp. 29–49). Orlando, FL: Academic.

    Google Scholar 

  • Yin, Y., Vanides, J., Ruiz-Primo, M. A., Ayala, C. C., & Shavelson, R. J. (2005). Comparison of two concept-mapping techniques: implications for scoring, interpretation and use. Journal of Research in Science Teaching, 42(2), 166–184.

    Article  Google Scholar 

  • Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: a research-based framework for socioscientific issues education. Science Education, 89, 357–377.

    Article  Google Scholar 

  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.

    Article  Google Scholar 

Download references

Acknowledgments

The preparation of this paper was supported by grant EG 304/1-1 from the German Research Foundation (DFG) in the Priority Program “Science and the General Public” (SPP 1409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Eggert.

Appendices

Appendices

Appendix 1

Screenshot: treatment condition “concepts-provided” (second session of teaching intervention: climate change)

figure a

figure b

Appendix 2

Screenshot: treatment condition “lines-provided” (third session of teaching intervention: climate engineering strategies)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggert, S., Nitsch, A., Boone, W.J. et al. Supporting Students’ Learning and Socioscientific Reasoning About Climate Change—the Effect of Computer-Based Concept Mapping Scaffolds. Res Sci Educ 47, 137–159 (2017). https://doi.org/10.1007/s11165-015-9493-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-015-9493-7

Keywords

Navigation