Skip to main content
Log in

Phase Composition and Charge Transport in Bismuth Molybdates

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The study of structural and electrical properties of three pure bismuth molybdate phases, α-Bi2Mo3O12, β-Bi2Mo2O9 and γ-Bi2MoO6, prepared by the spray drying technique, is described and discussed. The structure of polycrystalline, layered samples investigated by means of XRD and Raman spectroscopy was found to be monoclinic for the α- and β-phases and orthorhombic for the γ-phase. The microstructure of the as-prepared samples was not sufficiently developed under the given conditions of preparation, however, the thermal treatment can improve it. The high polarizability of Bi3+ cations with their lone-pair electrons influences the stability of the disordered oxygen sublattice. All as-prepared phases undergo a slight structural change in the temperature region of 280–430°C resulting in a decrease of the electrical conductivity probably due to an order ⇄ disorder transition in the oxygen arrangement during the sample heating. The change of electrical conductivity observed was found to be reversible in the high-temperature region and irreversible in the low-temperature one. The blocking of oxygen transport by the bismuth lone-pair electrons results in an increase of the activation energy and a decrease of the electrical conductivity in the high-temperature region. Relatively high relative dielectric permittivities ɛr, 36–52, were observed in dependence on the investigated phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bettahar, M.M., Appl. Catal. A, 1996, vol. 145, p. 1.

    CAS  Google Scholar 

  2. Grzybowska, B., Top. Catal., 2000, vol. 11/12, p. 23.

    Google Scholar 

  3. Grasselli, R.K. and Burrington, J.M., Adv. Catal., 1981, vol. 30, p. 133.

    CAS  Google Scholar 

  4. Grasselli, R.K., Top. Catal., 2002, vol. 21, p. 79.

    CAS  Google Scholar 

  5. Soares, A.P.V., Dimitrov, L.D., de Oliveira, M.C.A., Hilaire, L., Portela, M.F., and Grasselli, R.K., Appl. Catal. A, 2003, vol. 253, p. 191.

    Google Scholar 

  6. Wang, X.P., Fang, Q.F., Li, Z.S., Zhang, G.G., and Yi, Z.G., Appl. Phys. Lett., 2002, vol. 81, p. 3434.

    CAS  Google Scholar 

  7. van Oeffelen, D.A.G., van Hoof, J.H.C., and Schuit, G.C., J. Catal., 1985, vol. 95, p. 84.

    Google Scholar 

  8. Morrison, S.R., J. Catal., 1974, vol. 34, p. 462.

    CAS  Google Scholar 

  9. Sancier, K.M., Aoshima, A., and Wise, H., J. Catal., 1974, vol. 34, p. 257.

    CAS  Google Scholar 

  10. Herrmann, J.M., Pires, M.J., and Portela, M.F., J. Chem. Soc., Faraday Trans., 1985, vol. 81, p. 2107.

    Google Scholar 

  11. Sim, L.T., Lee, C.K., and West, A.R., J. Mater. Chem., 2002, vol. 12, p. 17.

    CAS  Google Scholar 

  12. Le, M.T., van Craenenbroeck, J., van Driessche, I., and Hoste, S., Appl. Catal. A, 2003, vol. 249, p. 355.

    CAS  Google Scholar 

  13. Van den Elzen, A.F. and Rieck, G.D., Acta Crystallogr., Sect. B: Struct. Sci., 1973, vol. 29, p. 2433.

    Google Scholar 

  14. van den Elzen, A.F. and Rieck, G.D., Res. Bull., 1975, vol. 10, p. 1163.

    Google Scholar 

  15. Teller, R., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1984, vol. 40, p. 2001.

    Google Scholar 

  16. Olier, R., J. Chem. Soc., Faraday Trans., 1989, vol. 85, p. 2615.

    Google Scholar 

  17. Jiang, N., Wachsman, E.D., and Jung, S.-H., Solid State Ionics, 2002, vol. 150, p. 347.

    CAS  Google Scholar 

  18. Wang, X.P. and Fang, Q.F., Phys. Rev. B, 2002, vol. 65, p. 064304.

    Google Scholar 

  19. Theobald, F.R. and Laarif, A., Mater. Res. Bull., 1985, vol. 20, p. 653.

    CAS  Google Scholar 

  20. Chen, H.Y. and Sleight, A.W., J. Solid State Chem., 1986, vol. 63, p. 70.

    CAS  Google Scholar 

  21. Hartmanova, M., Schneider, J., Navratil, V., Kundracik, F., Schulz, H., and Lomonova, E.E., Solid State Ionics, 2000, vol. 136–137, p. 107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hartmanova.

Additional information

__________

From Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 523–528.

Original English Text Copyright © 2005 by Hartmanova, Le, Driessche, Hoste, Kundracik.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmanova, M., Le, M.T., Van Driessche, I. et al. Phase Composition and Charge Transport in Bismuth Molybdates. Russ J Electrochem 41, 455–460 (2005). https://doi.org/10.1007/s11175-005-0090-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11175-005-0090-3

Key words

Navigation