Skip to main content
Log in

Competing, complementary and co-existing paradigms in techno-scientific literature: A case study of Nanotechnology for engineering

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Nanotechnology is a research field that has potential to drive the progress of mankind for the next few decades. Its application is found in every discipline, ranging from material science to space communication. Owing to its potential for ubiquity, and capability of replacing many general purpose technologies, co-existence of several paradigms are expected in nanotechnology. Flow Vergence (FV) gradient has been recently introduced as a metric to mine the network of scientific literature for detecting the paradigm shifts. In this paper, we have performed citation network analysis of scientific publications in nanotechnology from research area ‘engineering’ for identification of paradigms related to the same. Flow vergence gradient revealed 18 subnetworks that deal with 25 likely pivots of paradigm shifts. Major paradigm shifts can be found in the field of targeted drug delivery. Nanonetworks, a crossover of IT, BT and nanotechnology is the another interesting paradigm shift identified. An extended subnetwork analysis has been conducted to identify the competing or complementary nature of the emerging paradigms in the subnetworks. A framework for this has also been introduced. This analysis revealed that most of the paradigms in the targeted delivery are competing paradigms. Complementary paradigms are also identified in nano electronics and targeted drug delivery. Policy implications from this identification for various target groups are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279.

    Article  Google Scholar 

  • Akyildiz, I. F., & Jornet, J. M. (2010). The internet of nano-things. IEEE Wireless Communications, 17(6), 58–63.

    Article  Google Scholar 

  • Allarakhia, M., & Walsh, S. (2011). Managing knowledge assets under conditions of radical change: The case of the pharmaceutical industry. Technovation, 31(2), 105–117.

    Article  Google Scholar 

  • Avila-Robinson, A., & Miyazaki, K. (2013). Evolutionary paths of change of emerging nanotechnological innovation systems: The case of ZnO nanostructures. Scientometrics, 95(3), 829–849.

    Article  Google Scholar 

  • Bao, G., Mitragotri, S., & Tong, S. (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annual Review of Biomedical Engineering, 15, 253–282.

    Article  Google Scholar 

  • Batagelj, V. (2003). Efficient algorithms for citation network analysis. arXiv preprint arXiv:cs/0309023.

  • Batagelj, V., & Cerinšek, M. (2013). On bibliographic networks. Scientometrics, 96(3), 845–864.

    Article  Google Scholar 

  • Bhikkaji, B., Ratnam, M., & Moheimani, S. O. R. (2007). Pvpf control of piezoelectric tube scanners. Sensors and Actuators A: Physical, 135(2), 700–712.

    Article  Google Scholar 

  • Bjornstad, D. J., & Wolfe, A. K. (2011). Adding to the mix: Integrating elsi into a national nanoscale science and technology center. Science and Engineering Ethics, 17(4), 743–760.

    Article  Google Scholar 

  • Bresnahan, T. F., & Trajtenberg, M. (1995). General purpose technologies engines of growth? Journal of Econometrics, 65(1), 83–108.

    Article  Google Scholar 

  • Carlaw, K. I., & Lipsey, R. G. (2011). Sustained endogenous growth driven by structured and evolving general purpose technologies. Journal of Evolutionary Economics, 21(4), 563–593.

    Article  Google Scholar 

  • Cho, H., & Swartzlander, E. E. (2007). Adder designs and analyses for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 6(3), 374–383.

    Article  Google Scholar 

  • Cho, H., & Swartzlander, E. E, Jr. (2009). Adder and multiplier design in quantum-dot cellular automata. IEEE Transactions on Computers, 58(6), 721–727.

    Article  MathSciNet  MATH  Google Scholar 

  • Choi, J.-Y., Ramachandran, G., & Kandlikar, M. (2009). The impact of toxicity testing costs on nanomaterial regulation. Environmental Science & Technology, 43(9), 3030–3034.

    Article  Google Scholar 

  • Chun, Y. W., & Webster, T. J. (2009). The role of nanomedicine in growing tissues. Annals of Biomedical Engineering, 37(10), 2034–2047.

    Article  Google Scholar 

  • Coccia, M. (2017). The source and nature of general purpose technologies for supporting next k-waves: Global leadership and the case study of the us Navy’s mobile user objective system. Technological Forecasting and Social Change, 116, 331–339.

    Article  Google Scholar 

  • Dai, J., Wang, L., & Jain, F. (2009). Analysis of defect tolerance in molecular crossbar electronics. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(4), 529–540.

    Article  Google Scholar 

  • de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515.

    Article  Google Scholar 

  • Devasia, S., Eleftheriou, E., & Moheimani, S. O. R. (2007). A survey of control issues in nanopositioning. IEEE Transactions on Control Systems Technology, 15(5), 802–823.

    Article  Google Scholar 

  • Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147–162.

    Article  Google Scholar 

  • Érdi, P., Makovi, K., Somogyvári, Z., Strandburg, K., Tobochnik, J., Volf, P., et al. (2013). Prediction of emerging technologies based on analysis of the us patent citation network. Scientometrics, 95(1), 225–242.

    Article  Google Scholar 

  • Feynman, R. P. (1960). There’s plenty of room at the bottom. Engineering and Science, 23(5), 22–36.

    Google Scholar 

  • Frechette, M. F., Trudeau, M. L., Alamdar, H. D., & Boily, S. (2004). Introductory remarks on nanodielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 11(5), 808–818.

    Article  Google Scholar 

  • Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.

    Article  Google Scholar 

  • Gan, C. W., & Feng, S.-S. (2010). Transferrin-conjugated nanoparticles of poly (lactide)-d-$\alpha $-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials, 31(30), 7748–7757.

    Article  Google Scholar 

  • Garfield, E., Paris, S., & Stock, W. G. (2006). Histcitetm: A software tool for informetric analysis of citation linkage. Information Wissenschaft und Praxis, 57(8), 391.

    Google Scholar 

  • Garfield, E., Sher, I. H , & Torpie, R. J. (1964). The use of citation data in writing the history of science. Technical report, The Institute for Scientific Information.

  • Godman, M. (2008). But is it unique to nanotechnology? Science and Engineering Ethics, 14(3), 391–403.

    Article  Google Scholar 

  • Godwin, H. A., Chopra, K., Bradley, K. A., Cohen, Y., Harthorn, B. H., Hoek, E. M. V., et al. (2009). The university of California center for the environmental implications of nanotechnology. Environmental Science & Technology, 43(17), 6453–6457.

    Article  Google Scholar 

  • Hanson, G. W. (2008). Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes. IEEE Antennas and Propagation Magazine, 50(3), 66–77.

    Article  Google Scholar 

  • Hanson, G. W. (2011). A common electromagnetic framework for carbon nanotubes and solid nanowiresspatially dispersive conductivity, generalized Ohm’s law, distributed impedance, and transmission line model. IEEE Transactions on Microwave Theory and Techniques, 59(1), 9–20.

    Article  Google Scholar 

  • Helpman, E. (1998). General purpose technologies and economic growth. Cambridge, MA: MIT press.

    Google Scholar 

  • Helpman, E., & Trajtenberg, M. (1998a). Diffusion of general purpose technologies. In General purpose technologies and economic growth, p. 85.

  • Helpman, E., & Trajtenberg, M. (1998b). A time to sow and a time to reap: Growth based on general purpose technologies. In General purpose technologies and economic growth, p. 55.

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.

    Article  MATH  Google Scholar 

  • Hood, W., & Wilson, C. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291–314.

    Article  Google Scholar 

  • Huang, Z., Chen, H., Chen, Z.-K., & Roco, M. C. (2004). International nanotechnology development in 2003: Country, institution, and technology field analysis based on uspto patent database. Journal of Nanoparticle Research, 6(4), 325–354.

    Article  Google Scholar 

  • Huang, Z., Chen, H., Yip, A., Ng, G., Guo, F., Chen, Z.-K., et al. (2003). Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. Journal of Nanoparticle Research, 5(3–4), 333–363.

    Article  Google Scholar 

  • Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11(1), 39–63.

    Article  Google Scholar 

  • Kajikawa, Y., Ohno, J., Takeda, Y., Matsushima, K., & Komiyama, H. (2007). Creating an academic landscape of sustainability science: An analysis of the citation network. Sustainability Science, 2(2), 221–231.

    Article  Google Scholar 

  • Kejžar, N., Černe, S. K., & Batagelj, V. (2010). Network analysis of works on clustering and classification from web of science. In Classification as a tool for research (pp. 525–536). Springer.

  • Kong, S. D., Sartor, M., Hu, C.-M. J., Zhang, W., Zhang, L., & Jin, S. (2013). Magnetic field activated lipid–polymer hybrid nanoparticles for stimuli-responsive drug release. Acta Biomaterialia, 9(3), 5447–5452.

    Article  Google Scholar 

  • Kuhn, T. (1962). The structure of scientific revolutions.

  • Kuhn, T. S. (1969). The structure of scientific revolutions, postscript. Book.

  • Lathabai, H. H., Prabhakaran, T., & Changat, M. (2015). Centrality and flow vergence gradient based path analysis of scientific literature: A case study of biotechnology for engineering. Physica A: Statistical Mechanics and Its Applications, 429, 157–168.

    Article  Google Scholar 

  • Lee, S. H., Zhang, Z., & Feng, S.-S. (2007). Nanoparticles of poly (lactide)tocopheryl polyethylene glycol succinate (pla-tpgs) copolymers for protein drug delivery. Biomaterials, 28(11), 2041–2050.

    Article  Google Scholar 

  • Leydesdorff, L. (2007a). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303–1319.

    Article  Google Scholar 

  • Leydesdorff, L. (2007b). Visualization of the citation impact environments of scientific journals: An online mapping exercise. Journal of the American Society for Information Science and Technology, 58(1), 25–38.

    Article  Google Scholar 

  • Li, X., Chen, H., Huang, Z., & Roco, M.  C. (2007a). Patent citation network in nanotechnology (1976–2004). Journal of Nanoparticle Research, 9(3), 337–352.

  • Li, X., Lin, Y., Chen, H., & Roco, M.  C. (2007b). Worldwide nanotechnology development: A comparative study of uspto, epo, and jpo patents (1976–2004. Journal of Nanoparticle Research, 9(6), 977–1002.

  • Liu, Y., Li, K., Liu, B., & Feng, S.-S. (2010a). A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials, 31(35), 9145–9155.

  • Liu, Y., Li, K., Pan, J., Liu, B., & Feng, S.-S. (2010b). Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of docetaxel. Biomaterials, 31(2), 330–338.

  • Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of Washington Academy Sciences.

  • Meyer, D. E., Curran, M. A., & Gonzalez, M. A. (2009). An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environmental Science & Technology, 43(5), 1256–1263.

    Article  Google Scholar 

  • Mi, Y., Liu, Y., & Feng, S.-S. (2011). Formulation of docetaxel by folic acid-conjugated d-$\alpha $-tocopheryl polyethylene glycol succinate 2000 (vitamin e tpgs 2k) micelles for targeted and synergistic chemotherapy. Biomaterials, 32(16), 4058–4066.

    Article  Google Scholar 

  • Mi, Y., Liu, X., Zhao, J., Ding, J., & Feng, S.-S. (2012). Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials, 33(30), 7519–7529.

    Article  Google Scholar 

  • Nikulainen, T., & Palmberg, C. (2010). Transferring science-based technologies to industrydoes nanotechnology make a difference? Technovation, 30(1), 3–11.

    Article  Google Scholar 

  • Ostertag, K., & Hüsing, B. (2008). Identification of starting points for exposure assessment in the post-use phase of nanomaterial-containing products. Journal of Cleaner Production, 16(8), 938–948.

    Article  Google Scholar 

  • Pan, J., & Feng, S.-S. (2008). Targeted delivery of paclitaxel using folate-decorated poly (lactide)-vitamin e tpgs nanoparticles. Biomaterials, 29(17), 2663–2672.

    Article  Google Scholar 

  • Pan, J., & Feng, S.-S. (2009). Targeting and imaging cancer cells by folate-decorated, quantum dots (qds)-loaded nanoparticles of biodegradable polymers. Biomaterials, 30(6), 1176–1183.

    Article  Google Scholar 

  • Pantin, V. (2012). Global economic and political development in the first half of the 21st century: Forecast based on the wave conception. In 3G: Globalistics, global studies, globalization studies, p. 150.

  • Prabhakaran, T., Lathabai, H. H., & Changat, M. (2015). Detection of paradigm shifts and emerging fields using scientific network: A case study of information technology for engineering. Technological Forecasting and Social Change, 91, 124–145.

    Article  Google Scholar 

  • Prabhakaran, T., Lathabai, H. H., George, S., & Changat, M. (2018). Towards prediction of paradigm shifts from scientific literature. Scientometrics, 117(3), 1611–1644.

    Article  Google Scholar 

  • Rachlin, E., & Savage, J. (2008). Analysis of mask-based nanowire decoders. IEEE Transactions on Computers, 57(2), 175–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for information Science and Technology, 61(9), 1871–1887.

    Article  Google Scholar 

  • Rani, V. V. D., Vinoth-Kumar, L., Anitha, V. C., Manzoor, K., Deepthy, M., & Shantikumar, V. N. (2012). Osteointegration of titanium implant is sensitive to specific nanostructure morphology. Acta Biomaterialia, 8(5), 1976–1989.

    Article  Google Scholar 

  • Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.

    Article  MathSciNet  Google Scholar 

  • Tehrani, M. A., Safaei, F., Moaiyeri, M. H., & Navi, K. (2011). Design and implementation of multistage interconnection networks using quantum-dot cellular automata. Microelectronics Journal, 42(6), 913–922.

    Article  Google Scholar 

  • Thomson Scientific et al (2007). Isi web of knowledge. Science Citation Index and Journal Citation Report.

  • Ueno, T., Tsukimura, N., Yamada, M., & Ogawa, T. (2011). Enhanced bone-integration capability of alkali-and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy. Biomaterials, 32(30), 7297–7308.

    Article  Google Scholar 

  • Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.

    Article  Google Scholar 

  • Yang, X., Cai, L., Huang, H., & Zhao, X. (2012). A comparative analysis and design of quantum-dot cellular automata memory cell architecture. International Journal of Circuit Theory and Applications, 40(1), 93–103.

    Article  Google Scholar 

  • Zeng, X., Tao, W., Mei, L., Huang, L., Tan, C., & Feng, S.-S. (2013). Cholic acid-functionalized nanoparticles of star-shaped plga-vitamin e tpgs copolymer for docetaxel delivery to cervical cancer. Biomaterials, 34(25), 6058–6067.

    Article  Google Scholar 

  • Zhang, X., Dong, Y., Zeng, X., Liang, X., Li, X., Tao, W., et al. (2014). The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 35(6), 1932–1943.

    Article  Google Scholar 

Download references

Acknowledgements

This work used facility provided by ‘Scientometric lab’ (Order No. Pl.A1/Annual plan 16-17/Imp.plan/16 dtd. 29/11/2016), Department of Futures Studies, University of Kerala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thara Prabhakaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhakaran, T., Lathabai, H.H. & George, S. Competing, complementary and co-existing paradigms in techno-scientific literature: A case study of Nanotechnology for engineering. Scientometrics 118, 941–977 (2019). https://doi.org/10.1007/s11192-019-03013-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03013-2

Keywords

Navigation