Skip to main content

Advertisement

Log in

A new mechanism for the magnetic enhancement of hematite during heating: the role of clay minerals

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The magnetic properties of loess, lake, and ocean sediments are often used as indicators for paleoclimatic/paleoenvironmental changes. Thermomagnetic analysis is a conventional approach for identifying magnetic phases and thermal alteration of samples. Magnetic concentration parameters are often enhanced after thermal treatment. In this study, the role of clay minerals in magnetic enhancement at elevated temperatures is systematically investigated. The results indicate that the clay minerals (saponite, Ca-montmorillonite, kaolinite, and chlorite) are dominated by paramagnetic behaviour and that the magnetic properties remain relatively stable after heating to 700°C in argon. In contrast, mixtures of hematite and chlorite have a high degree of magnetic enhancement after heating in argon, which indicates that clay minerals play important role in magnetic enhancement. These results improve our understanding of the processes involved in complicated mineral transformations, which is important for retrieving paleoclimatic/paleoenvironemntal signals from magnetic proxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ao H., Dekkers M.J., Deng C.L. and Zhu R.X., 2009. Palaeclimatic significance of the Xiantai fluvio-lacustrine sequence in the Nihewan Basin (North China), based on rock magnetic properties and clay mineralogy. Geophys. J. Int., 177, 913–924.

    Article  Google Scholar 

  • Ao H., Deng C.L., Dekkers M.J. and Liu Q.S., 2010. Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet. Sci. Lett., 292, 191–200.

    Article  Google Scholar 

  • Biscaye B.E., 1965. Mineralogy and sedimentation of recent Deep-Sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull., 76, 803–832.

    Article  Google Scholar 

  • Boslough M.B., Venturini E.L., Morosin B. and Graham R.A., 1986. Physical properties of shocked and thermally altered nontronite: Implications for the martian surface. J. Geophys. Res., 91, E207–E214.

    Article  Google Scholar 

  • Chamley H., 1989. Clay Sedimentology. Spring-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Dearing J.A., Hay K.L., Baban S.M.J., Huddleston A.S., Wellington E.M.H. and Loveland P.J., 1996. Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophys. J. Int., 127, 728–734.

    Article  Google Scholar 

  • Deng C.L., Zhu R.X., Verosub K.L., Singer M.J. and Vidic N.J., 2004. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J. Geophys. Res., 109, B01103.

    Article  Google Scholar 

  • Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Ehrmann W., 1998. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol., 139, 213–231.

    Article  Google Scholar 

  • Gavin P. and Chevrier V., 2010. Thermal alteration of nontronite and montmorillonite: Implications for martian surface. Icarus, 208, 721–734.

    Article  Google Scholar 

  • Hanesch M., Stanjek H. and Petersen N., 2006. Thermomagnetic measurements of soil iron minerals the role of organic carbon. Geophys. J. Int., 165, 53–61.

    Article  Google Scholar 

  • Hirt A.M., Banin A. and Gehring A.U., 1993. Thermal generation of ferromagnetic minerals from iron-enriched smectites. Geophys. J. Int., 115, 1161–1168.

    Article  Google Scholar 

  • Hviid S.F., Agerkvist D.P., Olsen M., Koch C.B. and Madsen M.B., 1994. Heated nontronite: Possible relations to the magnetic phases in the martian soil. Hyperfine Interact., 91, 529–533.

    Article  Google Scholar 

  • Jacobs M.B. and Hay J.D., 1972. Paleoclimatic events indicated by mineralogical changes in deepsea sediments. J. Sediment. Petrol., 42, 889–898.

    Google Scholar 

  • Jiménez-Espinosa R. and Jiménez-Millán J., 2003. Calcrete development in mediterranean colluvial carbonate systems from SE Spain. J. Arid. Environ., 53, 479–489.

    Article  Google Scholar 

  • Jordanova D., Hoffmann V. and Fehr K.T., 2004. Mineral magnetic charaterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian part). Earth Planet. Sci. Lett., 221, 71–89.

    Article  Google Scholar 

  • Keller W.D., 1970. Environmental aspects of clay minerals. J. Sediment. Res., 4, 788–813.

    Google Scholar 

  • Kobayashi K. and Fuller M., 1968. Stable remanence and memory of multi-domai materials with special referece to magnetite. Philos. Mag., 18, 601–625.

    Article  Google Scholar 

  • Lan X.H., 1990. Clay minerals as an index of paleoclimate. Geol. Sci. Tech. Info., 9(4), 31–35.

    Google Scholar 

  • Le Borgne E., 1955. Susceptinilité magnétique anormal de sol superficial. Ann. Geophys., 11, 399–419 (in French).

    Google Scholar 

  • Liu Q.S., Deng C.L., Yu Y.J., Torrent J., Jackson M.J., Banerjee S.K. and Zhu R.X., 2005. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess palaeosols. Geophys. J. Int., 161, 102–112.

    Article  Google Scholar 

  • Maldonado A. and Stanley D.J., 1981. Clay mineral distribution pattern as influenced by depositional processes in the southeastern Levantine Sea. Sedimentology, 28, 21–32.

    Article  Google Scholar 

  • Moskowitz B.M. and Hargraves R.B., 1984. Magnetic cristobalite: A possible new magnetic phases produced by the thermal decomposition of nontronite. Science, 225, 1152–1154.

    Article  Google Scholar 

  • Oches E.A. and Banerjee S.K., 1996. Rock-magnetic proxies of climate change from loess-paleosol sediments of the Czech Republic. Stud. Geophys. Geod., 40, 287–300.

    Article  Google Scholar 

  • Petrovský E. and Kapička A., 2006. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res., 111, B12S27.

    Article  Google Scholar 

  • Proust D., Eymery J.P. and Beaufort D., 1986. Supergene vermiculitization of a magnesian chlorite: iron and magnesium removal processes. Clays Clay Miner., 34, 572–580.

    Article  Google Scholar 

  • Rivera-Jimenez S.M., Lehner M.M., Cabrera-Lafaurie W.A. and Hernández-Maldonado A.J., 2011. Removal of naproxen, salicylic acid, clofibric acid, and carbamazepine by water phase adsorption onto inorganic-organic-intercalated bentonites modified with transition metal cations. Environ. Eng. Sci., 28(3), 171–181.

    Article  Google Scholar 

  • Roberts A.P., Cui Y.L. and Verosub K.L., 1995. Wasp-waisted hystersis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J. Geophys. Res., 100(B9), 17909–17924.

    Article  Google Scholar 

  • Rowan C.J. and Roberts A.P., 2006. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet. Sci. Lett., 241, 119–137.

    Article  Google Scholar 

  • Singer A., 1984. The paleoclimatic interpretion of clay minerals in sediments — a review. Earth Sci. Res., 21, 251–293.

    Article  Google Scholar 

  • Tang Y.J., Jia J.Y. and Xie X.D., 2002. Environmental significance of clay minerals. Earth Sci. Front., 9, 337–344.

    Google Scholar 

  • Tarduno J.A., 1995. Superparamagnetism and reduction diagenesis in pelagic sediments: Enhancement or depletion? Geophys. Res. Lett., 22, 1337–1340.

    Article  Google Scholar 

  • Taylor K.G.G., 1996. Pedogenic clay mineral transformation in the Weald Basin: implications for Early Cretaceous hinterland climate reconstructions. Cretac. Res., 17, 103–108.

    Article  Google Scholar 

  • Temgoua E., Pfeifer H. and Bitom D., 2003. Trace element differentiation in ferruginous accumulation soil patterns under tropical rainforest of southern Cameroon, the role of climatic change. Sci. Total Environ., 303, 203–214.

    Article  Google Scholar 

  • Tite M.S. and Linington R.E., 1975. Effect of climate on the magnetic susceptibility of soils. Nature, 256, 565–566.

    Article  Google Scholar 

  • Torrent J., Barrón V. and Liu Q.S., 2006. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophy. Res. Lett., 33, L02401.

    Article  Google Scholar 

  • Townsend M.G., Longworth G. and Kodama H., 1986. Magnetic interaction at low temperature in chlorite and its products of oxidation: a Mössbauer investigation. Can. Mineral., 24, 105–115.

    Google Scholar 

  • Wagner U., Murad E., Knorr W. and Wagner F.E., 1990. Mossbauer study of illitic clays containing iron-rich impurities. Hyperfine Interact., 57, 2313–2318.

    Article  Google Scholar 

  • Zhang C.X., Huang B.C. and Liu Q.S., 2009. Magnetic properties of different receptors around steel plants and their environmental significance. Chinese J. Geophys.-Chinese Ed., 52, 2826–2839.

    Google Scholar 

  • Zhang C.X., Liu Q.S., Huang B.C. and Su Y.L., 2010. Magnetic enhancement upon heating of environmentally polluted samples containing haematite and iron. Geophys. J. Int., 181, 1381–1394.

    Google Scholar 

  • Zhang C.X., Qiao Q.Q., Piper J.D.A. and Huang B.C., 2011. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ. Pollut., 159, 3057–3070.

    Article  Google Scholar 

  • Zheng Y. and Zhang S.H., 2008. Magnetic properties of street dust and topsoil in Beijing and its environmental implications. Chinese Sci. Bull., 53, 408–417.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Paterson, G.A. & Liu, Q. A new mechanism for the magnetic enhancement of hematite during heating: the role of clay minerals. Stud Geophys Geod 56, 845–860 (2012). https://doi.org/10.1007/s11200-011-9018-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-9018-4

Keywords

Navigation