Skip to main content
Log in

Flexible parametric quantile regression model

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This article introduces regression quantile models using both RS (Ramberg and Schmeiser, Commun Assoc Comput Mach 17:78–82, 1974) and FKML (Freimer et al., Commun Stat 17(10):3547–3567, 1988) generalised lambda distributions (GLD) and demonstrates the versatility of proposed models for a range of linear/non-linear and heteroscedastic/homoscedastic empirical data. Owing to the rich shapes of GLDs, GLD quantile regression is a competitive flexible model compared to standard quantile regression. The proposed method has some major advantages: (1) it provides a reference line which is very robust to outliers with the attractive property of zero mean residuals and (2) it gives a unified, elegant quantile regression model from the reference line with smooth regression coefficients across different quantiles. The proposed method has wide applications given the flexibility of GLDs. The goodness of fit of the proposed model can be assessed via QQ plots and the Kolmogorov–Smirnov test, to ensure the appropriateness of the statistical inference under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Cheng, R.C.H., Amin, N.A.K.: Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin. J. R. Stat. Soc. B 45(3), 394–403 (1983)

    MATH  MathSciNet  Google Scholar 

  • Cheng, R.C.H., Stephens, M.A.: A goodness-of-fit test using Moran’s statistic with estimated parameters. Biometrika 76(2), 385–392 (1989). doi:10.1093/biomet/76.2.385

    Article  MATH  MathSciNet  Google Scholar 

  • Clarke, B. R. (2008). Linear Models : The Theory and Application of Analysis of Variance. http://UWA.eblib.com.au/patron/FullRecord.aspx?p=362059

  • Efron, B., Tibshirani, R.J.: An Introduction to the Boostrap. Chapman & Hall, New York (1993)

    Google Scholar 

  • Freimer, M., Kollia, G., Mudholkar, G., Lin, C.: A Study of the generalised Tukey lambda family. Commun. Stat. 17(10), 3547–3567 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Gilchrist, W.: Modelling with quantile distributions. J. Appl. Stat. 24(1), 113–122 (1997)

    Article  Google Scholar 

  • Gilchrist, Warren: Statistical Modelling with Quantile Functions. Chapman and Hall/CRC, New York (2000)

    Google Scholar 

  • Gilchrist, Warren: Regression revisited. Int. Stat. Rev. 76(3), 401–418 (2008)

    Article  MathSciNet  Google Scholar 

  • Hyndman, R., Fan, Y.: Sample quantiles in statistical packages. Am. Stat. 50(4), 361–365 (1996)

    Google Scholar 

  • Karian, Z., Dudewicz, E.: Fitting Statistical Distributions: The Generalized Lambda Distribution and Generalised Bootstrap Methods. Chapman and Hall, New York (2000)

    Google Scholar 

  • Karvanen, J., Nuutinen, A.: Characterizing the generalized lambda distribution by L-moments. Comput. Stat. Data Anal. 52(4), 1971–1983 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • King, R., MacGillivray, H.: A starship estimation method for the generalised lambda distributions. Aust. N. Z. J. Stat. 41(3), 353–374 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Koenker, R. (2013). Quantile Regression in R: A Vignette

  • Koenker, R.: Quantile Regression. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  • Koenker, R., Bassett Jr, G.: Regression quantiles. Econometrica 46(1), 33–50 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Koenker, R., Bassett Jr, G.: Robust tests of heteroscedasticity based on regression quantiles. Econometrica 50, 43–61 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Lakhany, A, & Massuer, H. (2000). Estimating the parameters of the generalised lambda distribution. Algo Res. Q. 47–58.

  • Mosteller, F., Tukey, J.: Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley, Reading (1977)

  • Parzen, E.: Nonparametric statistical data modeling. J. Am. Stat. Assoc. 74(365), 105–121 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Ramberg, J., Schmeiser, B.: An approximate method for generating asymmetric random variables. Commun. Assoc. Comput. Mach. 17, 78–82 (1974)

    MATH  MathSciNet  Google Scholar 

  • Ramberg, J., Tadikamalla, P., Dudewicz, E., Mykytka, E.: A probability distribution and its uses in fitting the data. Technometrics 21, 201–214 (1979)

    Article  MATH  Google Scholar 

  • Reich, B.J., Bondell, H.D., Wang, H.J.: Flexible Bayesian quantile regression for independent and clustered data. Biostatistics 11(2), 337–352 (2010). doi:10.1093/biostatistics/kxp049

    Article  Google Scholar 

  • Reich, B.J., Fuentes, M., Dunson, D.B.: Bayesian spatial quantile regression. J. Am. Stat. Assoc. 106(493), 6–20 (2011). doi:10.1198/jasa.2010.ap09237

    Article  MathSciNet  Google Scholar 

  • Silverman, B.W.: Some aspects of the spline smoothing approach to non-parametric curve fitting. J. R. Stat. Soc. B 47, 1–52 (1985)

    MATH  Google Scholar 

  • Su, S.: Distributional modelling of pipeline leakage repair costs for a water utility company. Am. J. Math. Manag. Sci. 27(3–4), 369–400 (2007a)

    MATH  Google Scholar 

  • Su, S.: Fitting single and mixture of generalized lambda distributions to data via discretized and maximum likelihood methods: GLDEX. R. J. Stat. Softw. 21(9), 1–17 (2007b)

    Google Scholar 

  • Su, S.: Numerical maximum log likelihood estimation for generalized lambda distributions. Comput. Stat. Data Anal. 51(8), 3983–3998 (2007c)

    Article  MATH  Google Scholar 

  • Su, S.: Chapter 14: Fitting GLD to data via quantile matching method. In: Karian, Z., Dudewicz, E. (eds.) Handbook of Distribution Fitting Methods with R, pp. 557–583. CRC Press/Taylor & Francis, Boca Raton (2010a)

    Chapter  Google Scholar 

  • Su, S.: Chapter 15: Fitting GLD to data using the GLDEX 1.0.4 in R. In: Karian, Z., Dudewicz, E. (eds.) Handbook of Distribution Fitting Methods with R (pp. 585–608). CRC Press/Taylor & Francis, Boca Raton (2010b)

  • Su, S.: Chapter 28: Distributional modeling of pipeline leakage repair costs for a water utility company. In: Karian, Z., Dudewicz, E. (eds.) Handbook of Distribution Fitting Methods with R, pp. 1171–1205. CRC Press/Taylor & Francis, Boca Raton (2010c)

  • Theil, H.: The analysis of disturbances in regression analysis. J. Am. Stat. Assoc. 60, 1067–1079 (1965)

    Article  MathSciNet  Google Scholar 

  • Titterington, D.M.: Comment on ‘Estimating parameters in continuous univariate distributions. J. R. Stat. Soc. B 47(1), 115–116 (1985)

    Google Scholar 

  • Yu, K., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54(4), 437–447 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, S. Flexible parametric quantile regression model. Stat Comput 25, 635–650 (2015). https://doi.org/10.1007/s11222-014-9457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-014-9457-1

Keywords

Navigation