Skip to main content
Log in

Exact solutions of one-dimensional nonlinear shallow water equations over even and sloping bottoms

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish an equivalence of two systems of equations of one-dimensional shallow water models describing the propagation of surface waves over even and sloping bottoms. For each of these systems, we obtain formulas for the general form of their nondegenerate solutions, which are expressible in terms of solutions of the Darboux equation. The invariant solutions of the Darboux equation that we find are simplest representatives of its essentially different exact solutions (those not related by invertible point transformations). They depend on 21 arbitrary real constants; after “proliferation” formulas derived by methods of group theory analysis are applied, they generate a 27-parameter family of essentially different exact solutions. Subsequently using the derived infinitesimal “proliferation” formulas for the solutions in this family generates a denumerable set of exact solutions, whose linear span constitutes an infinite-dimensional vector space of solutions of the Darboux equation. This vector space of solutions of the Darboux equation and the general formulas for nondegenerate solutions of systems of shallow water equations with even and sloping bottoms give an infinite set of their solutions. The “proliferation” formulas for these systems determine their additional nondegenerate solutions. We also find all degenerate solutions of these systems and thus construct a database of an infinite set of exact solutions of systems of equations of the one-dimensional nonlinear shallow water model with even and sloping bottoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Stoker, WaterWaves: The Mathematical Theory with Applications (Pure Appl. Math., Vol. 4), Interscience, London (1957).

    Google Scholar 

  2. E. N. Pelinovskii, Hydrodynamics of Tsunami Waves [in Russian], IPF RAS, Nizhny Novgorod (1996).

    Google Scholar 

  3. G. F. Carrier and H. P. Greenspan, J. Fluid Mech., 4, 97–109 (1958).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. S. Yu. Dobrokhotov and B. Tirozzi, Russ. Math. Surveys, 65, 177–179 (2010).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. I. Didenkulova and E. Pelinovsky, Nonlinearity, 24, R1–R18 (2011).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. S. Yu. Dobrokhotov, V. E. Nazaikinskii, and B. Tirozzi, Russ. J. Math. Phys., 17, 434–447 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  7. D. S. Minenkov, Math. Notes, 92, 664–672 (2012).

    Article  MATH  Google Scholar 

  8. G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).

    MATH  Google Scholar 

  9. Yu. A. Chirkunov and S. V. Khabirov, Elements of Symmetric Analysis of Differential Equations of the Mechanics of a Continuous Medium [in Russian], NGTU, Novosibirsk (2012).

    Google Scholar 

  10. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    MATH  Google Scholar 

  11. G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Vol. 2, Gauthier-Villars, Paris (1915).

    Google Scholar 

  12. L. V. Ovsyannikov, J. Appl. Mech. Tech. Phys., 126–145 (1960).

    Google Scholar 

  13. W. Miller, Jr., SIAM J. Math. Anal., 4, 314–328 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  14. O. V. Kaptsov, Methods of Integration of Partial Differential Equations [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  15. Yu. A. Chirkunov, Soviet Math. Dokl., 42, 404–408 (1991).

    MathSciNet  Google Scholar 

  16. Yu. A. Chirkunov, J. Appl. Industr. Math., 4, 496–504 (2010).

    Article  MathSciNet  Google Scholar 

  17. Yu. A. Chirkunov, J. Appl. Industr. Math., 5, 313–321 (2011).

    Article  MathSciNet  Google Scholar 

  18. Yu. A. Chirkunov, Math. Notes, 87, 115–121 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  19. Yu. A. Chirkunov, Group Analysis of Linear and Quasilinear Differential Equations [in Russian], NGUEU, Novosibirsk (2007).

    Google Scholar 

  20. Yu. A. Chirkunov, Dokl. Math., 79, 415–417 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. V. Aksenov, Dokl. Math., 64, 421–424 (2001).

    Google Scholar 

  22. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions, Cambridge Univ. Press, Cambridge (1996).

    Google Scholar 

  23. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatlit, Moscow (1971); English transl.: Tables of Integrals, Series, and Products, Acad. Press, New York (1980).

    Google Scholar 

  24. S. Yu. Dobrokhotov and S. Ya. Sekerzh-Zen’kovich, Math. Notes, 88, 894–897 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Yu. Dobrokhotov, S. B. Medvedev, and D. S. Minenkov, Math. Notes, 93, 704–714 (2013).

    Article  MATH  Google Scholar 

  26. P. Kh. Mazova and E. N. Pelinovskii, “Surge of tsunami waves on a shore without breaking,” in: Waves and Diffraction [in Russian], Vol. 2, IRE Akad. Nauk USSR, Moscow (1981), pp. 265–268.

    Google Scholar 

  27. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge (1944).

    MATH  Google Scholar 

  28. N. S. Koshlyakov, Fundamental Differential Equations of Mathematical Physics [in Russian], Fizmatlit, Moscow (1962).

    Google Scholar 

  29. M. Poisson, École Polytechnique, 12,19, 215–248 (1823).

    Google Scholar 

  30. W. Miller Jr., Symmetry and Separation of Variables, Addison-Wesley, Providence, R. I. (1977).

    MATH  Google Scholar 

  31. R. von Mises, Mathematical Theory of Compressible Fluid Flow, Acad. Press, New York (1958).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Chirkunov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 178, No. 3, pp. 322–345, March, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkunov, Y.A., Dobrokhotov, S.Y., Medvedev, S.B. et al. Exact solutions of one-dimensional nonlinear shallow water equations over even and sloping bottoms. Theor Math Phys 178, 278–298 (2014). https://doi.org/10.1007/s11232-014-0143-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0143-4

Keywords

Navigation