Skip to main content
Log in

Calculation of the permeability and apparent permeability of three-dimensional porous media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this study, creeping and inertial incompressible fluid flows through three-dimensional porous media are considered, and an analytical–numerical approach is employed to calculate the associated permeability and apparent permeability. The multiscale homogenization method for periodic structures is applied to the Stokes and Navier–Stokes equations (aided by a control-volume type argument in the latter case), to derive the appropriate cell problems and effective properties. Numerical solutions are then obtained through Galerkin finite-element formulations. The implementations are validated, and results are presented for flows through cubic lattices of cylinders, and through the dendritic zone found at the solid–liquid interface during solidification of metals. For the interdendritic flow problem, a geometric configuration for the periodic cell is built by the approximate matching of experimental and numerical results for the creeping-flow problem; inertial effects are then quantified upon solution of the inertial-flow problem. Finally, the functional behavior of the apparent permeability results is analyzed in the light of existing macroscopic seepage laws. The findings contribute to the (numerical) verification of the validity of such laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auriault J.-L.: Homogénéisation. UJF, INPG, Grenoble, France (2001)

    Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. Dover Publications, Inc, New York (1988)

    Google Scholar 

  • Bousquet-Melou P., Goyeau B., Quintard M., Fichot F., Gobin D.: Average momentum equation for interdendritic flow in a solidifying columnar mushy zone. Int. J. Heat Mass Transf. 45(17), 3651–3665 (2002)

    Article  Google Scholar 

  • Brown S.G.R., Spittle J.A., Jarvis D.J., Walden-Bevan R.: Numerical determination of liquid flow permeabilities for equiaxed dendritic structures. Acta Mater. 50(6), 1559–1569 (2002)

    Article  Google Scholar 

  • Chen Z., Lyons S.L., Qin G.: Derivation of the Forchheimer law via homogenization. Transp. Porous Media 44(2), 325–335 (2001)

    Article  Google Scholar 

  • Drummond J.E., Tahir M.I.: Laminar viscous flow through regular arrays of parallel solid cylinders. Int. J. Multiph. Flow 10(5), 515–540 (1984)

    Article  Google Scholar 

  • Edwards D.A., Shapiro M., Bar-Yoseph Y., Shapira M.: The influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylinders. Phys. Fluids A 2(1), 45–55 (1990)

    Article  Google Scholar 

  • Faessel M., Delisee C., Bos F., Castera P.: 3D Modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis. Compos. Sci. Technol. 65(13), 1931–1940 (2005)

    Article  Google Scholar 

  • Firdaouss M., Guermond J.-L., Le Quere P.: Nonlinear corrections to Darcy’s law at low Reynolds numbers. J. Fluid Mech. 343, 331–350 (1997)

    Article  Google Scholar 

  • Fourar M., Radilla G., Lenormand R., Moyne C.: On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media. Adv. Water Res. 27(6), 669–677 (2004)

    Article  Google Scholar 

  • Ghaddar, C.K.: Parallel analytico-computational methods for multicomponent media: application to thermal composites and porous-media flows. Ph.D. Thesis, Massachusetts Institute of Technology (1995a).

  • Ghaddar C.K.: On the permeability of unidirectional fibrous media: a parallel computational approach. Phys. Fluids 7(11), 2563–2586 (1995b)

    Article  Google Scholar 

  • Heinrich J.C., Poirier D.R., Nagelhout D.F.: Mesh generation and flow calculations in highly contorted geometries. Comput. Methods Appl. Mech. Eng. 133(1), 79–92 (1996)

    Article  Google Scholar 

  • Higdon J.L.L., Ford G.D.: Permeability of three-dimensional models of fibrous porous media. J. Fluid Mech. 308, 341–361 (1996)

    Article  Google Scholar 

  • Hornung U.: Homogenization and Porous Media. Springer-Verlag New York, Inc, New York (1997)

    Google Scholar 

  • Kaviany M.: Principles of Heat Transfer in Porous Media. 2nd edn. Springer-Verlag New York, Inc, New York (1995)

    Google Scholar 

  • Lucas Y., Panfilov M., Bues M.: High velocity flow through fractured and porous media: the role of flow non-periodicity. Eur. J. Mech. B/Fluids 26(2), 295–303 (2007)

    Article  Google Scholar 

  • Koch D.L., Ladd A.J.C.: Moderate Reynolds number flows through periodic and random arrays of aligned cylinders. J. Fluid Mech. 349, 31–66 (1997)

    Article  Google Scholar 

  • Maday Y., Meiron D., Patera A.T., Rønquist E.M.: Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations. SIAM J. Sci. Comput. 14(2), 310–337 (1993)

    Article  Google Scholar 

  • Maday Y., Patera A.T., Rønquist E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comp. 5(4), 263–292 (1990)

    Article  Google Scholar 

  • Maire E., Colombo P., Adrien J., Babout L., Biasetto L.: Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography. J. Eur. Ceram. Soc. 27(4), 1973–1981 (2007)

    Article  Google Scholar 

  • Marus̆ic-Paloka E., Mikelic A.: The derivation of a nonlinear filtration law including the inertia effects via homogenization. Nonlinear Anal. Theory Methods Appl. 42(1), 97–137 (2000)

    Article  Google Scholar 

  • McCarthy J.F.: Lattice gas cellular automata method for flow in the interdendritic region. Acta Metall. Mater. 42(5), 1573–1581 (1994)

    Article  Google Scholar 

  • Mei C.C., Auriault J.-L.: The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647–663 (1991)

    Article  Google Scholar 

  • Murakami K., Shiraishi A., Okamoto T.: Interdendritic fluid flow normal to primary dendrite-arms in cubic alloys. Acta Metall. 31(9), 1417–1424 (1983)

    Article  Google Scholar 

  • Murakami K., Shiraishi A., Okamoto T.: Fluid flow in interdendritic space in cubic alloys. Acta Metall. 32(9), 1423–1428 (1984)

    Article  Google Scholar 

  • Nagelhout D., Bhat M.S., Heinrich J.C., Poirier D.R.: Permeability for flow normal to a sparse array of fibres. Mat. Sci. Eng. A-Struct. 191(1), 203–208 (1995)

    Article  Google Scholar 

  • Neethirajan S., Karunakaran C., Jayas D.S., White N.D.G.: X-ray computed tomography image analysis to explain the airflow resistance differences in grain bulks. Biosyst. Eng. 94(4), 545–555 (2006)

    Article  Google Scholar 

  • Ngo N.D., Tamma K.K.: Microscale permeability predictions of porous fibrous media. Int. J. Heat Mass Transf. 44(16), 3135–3145 (2001)

    Article  Google Scholar 

  • Poirier D.R.: Permeability for flow of interdendritic liquid in columnar-dendritic alloys. Metall. Trans. B 18(1), 245–255 (1987)

    Article  Google Scholar 

  • Prescott P.J., Incropera F.P., Bennon W.D.: Modeling of dendritic solidification systems: reassessment of the continuum momentum equation. Int. J. Heat Mass Transf. 34(9), 2351–2359 (1991)

    Article  Google Scholar 

  • Reddy J.N., Gartling D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics. 2nd edn. CRC Press, Boca Raton, Florida (2001)

    Google Scholar 

  • Rocha, R.P.A.: Permeability and apparent permeability of porous media with three-dimensional microstructures (in Portuguese). D.Sc. Thesis, COPPE/Federal University of Rio de Janeiro, Brazil (2007).

  • Schöberl, J.: NETGEN-4.0. Numerical and symbolic scientific computing, Johannes Kepler Universität Linz, Austria (2001).

  • Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania (1994).

  • Sisavath S., Al-Yaarubi A., Pain C.C., Zimmerman R.W.: A simple model for deviations from the cubic law for a fracture undergoing dilation or closure. Pure Appl. Geophys. 160(5–6), 1009–1022 (2003)

    Article  Google Scholar 

  • Skjetne E., Auriault J.-L.: New insights on steady, non-linear flow in porous media. Eur. J. Mech. B/Fluids 18(1), 131–145 (1999)

    Article  Google Scholar 

  • Stoehr R.A.: Modeling the influence of fluid flow on the development of porosity and microstructure in castings. Can. Metall. Q. 37(3-4), 179–184 (1998)

    Article  Google Scholar 

  • The Engineering ToolBox: Mercury Properties. http://www.engineeringtoolbox.com/mercury-d_1002.html (2008). Accessed 23 April 2008

  • Tian J., Kim T., Lu T.J., Hodson H.P., Queheillaltb D.T., Sypeck D.J., Wadley H.N.G.: The effects of topology upon fluid-flow and heat-transfer within cellular copper structures. Int. J. Heat Mass Transf. 47(14–16), 3171–3186 (2004)

    Article  Google Scholar 

  • Torquato S.: Random Heterogeneous Materials, Microstructure and Macroscopic Properties. Springer-Verlag New York, Inc, New York (2002)

    Google Scholar 

  • Zick A.A., Homsy G.M.: Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115, 13–26 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel E. Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, R.P.A., Cruz, M.E. Calculation of the permeability and apparent permeability of three-dimensional porous media. Transp Porous Med 83, 349–373 (2010). https://doi.org/10.1007/s11242-009-9445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9445-7

Keywords

Navigation