Skip to main content

Advertisement

Log in

Partitioning of Hg Between Solid and Dissolved Organic Matter in the Humus Layer of Boreal Forests

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The mobility of mercury (Hg) deposited on soils controls the concentration and toxicity of Hg within soils and in nearby streams and lakes, but has rarely been quantified under field conditions. We studied the in situ partitioning of Hg in the organic top layer (mor) of podsols at two boreal forest sites differing in Hg deposition and climatic regime (S. and N. Sweden, with pollution declining to the north). Soil solution leaching from the mor layer was repeatedly sampled using zero-tension lysimeters over 2 years, partly in parallel with tension lysimeters. Concentrations of Hg and dissolved organic carbon (DOC) were higher while pH was lower at the southern site (means ± SD: Hg = 44 ± 15 ng L−1, DOC = 63.0 ± 31.3 mg L−1, pH = 4.05 ± 0.53) than at the northern site (Hg = 22 ± 6 ng L−1, DOC = 41.8 ± 12.1 mg L−1, pH = 4.28 ± 0.43). There was a positive correlation over time between dissolved Hg and DOC at both sites, even though the DOC concentration peaked during autumn at both sites, while the Hg concentration remained more constant. This correlation is consistent with the expected strong association of Hg with organic matter and supports the use of Hg/C ratios in assessments of Hg mobility. In the solid phase of the overlying Of layer, both Hg concentrations and Hg/C ratios were higher at the southern site (means ± SD: 0.34 ± 0.06 μg g−1 dw and 0.76 ± 0.14 μg g−1 C, respectively) than at the northern site (0.31 ± 0.05 μg g−1 dw and 0.70 ± 0.12 μg g−1 C, respectively). However, concentrations in the solid phase differed less than might be expected from the difference in current atmospheric input, suggesting that the fraction of natural Hg is still substantial. At both sites, Hg/C ratios in the upper half of the mor layer were only about two thirds of those in the lower half, suggesting that the recent decrease in anthropogenic Hg deposition onto the soil is offset by a natural downward enrichment of Hg due to soil decomposition or other processes. Most interestingly, comparison with soil leachate showed that the average Hg/C ratios in the dissolved phase of the mor layers at both sites did not differ from the average Hg/C ratios in the overlying solid organic matter. These results indicate a simple mobilisation with negligible fractionation, despite differences in Hg deposition patterns, soil chemistry and climatic regimes. Such a straight-forward linkage between Hg and organic matter greatly facilitates the parameterisation of watershed models for assessing the biogeochemical fate, toxic effect and critical level of atmospheric Hg input to forest soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aastrup, M., Johnson, J., Bringmark, E., Bringmark, L., & Iverfeldt, A. (1991). Occurrence and transport of mercury within a small catchment-area. Water, Air and Soil Pollution, 56, 155–167.

    Article  CAS  Google Scholar 

  • Akselsson, C., Berg, B., Meentemeyer, V., & Westling, O. (2005). Carbon sequestration rates in organic layers of boreal and temperate forest soils – Sweden as a case study. Global Ecology and Biogeography, 14(1), 77–84.

    Article  Google Scholar 

  • Alriksson, A. (2001). Regional variability of Cd, Hg, Pb and C concentrations in different horizons of Swedish forest soils. Water, Air, & Soil Pollution. Focus, 1, 325–341.

    Article  CAS  Google Scholar 

  • Berggren, D. (1999). The solubility of aluminium in two Swedish acidified forest soils: An evaluation of lysimeter measurements using batch titration data. Water, Air and Soil Pollution, 114(1–2), 137–153.

    Article  CAS  Google Scholar 

  • Bergkvist, B. (1987). Soil solution chemistry and metal budgets of spruce forest ecosystems in S-Sweden. Water, Air and Soil Pollution, 33(1–2), 131–154.

    Article  CAS  Google Scholar 

  • Bergkvist, B., Folkeson, L., & Berggren, D. (1989). Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems – A literature review. Water, Air and Soil Pollution, 47(3–4), 217–286.

    Article  CAS  Google Scholar 

  • Biester, H., Müller, G., & Schöler, H. F. (2002). Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Science of the Total Environment, 284(1–3), 191–203.

    Article  CAS  Google Scholar 

  • Bindler, R., Olofsson, C., Renberg, I., & Frech, W. (2001). Temporal trends in mercury accumulation in lake sediments in Sweden. Water, Air, & Soil Pollution. Focus, 1, 343–355.

    Article  CAS  Google Scholar 

  • Bringmark, E., & Bringmark, L. (1998). Improved soil monitoring by use of spatial patterns. Ambio, 27(1), 45–52.

    Google Scholar 

  • Bringmark, L., & Bringmark, E. (2001a). Lowest effect levels of lead and mercury on decomposition of mor layer samples in a long-term experiment. Water, Air, & Soil Pollution. Focus, 1(3–4), 425–437.

    CAS  Google Scholar 

  • Bringmark, L., & Bringmark, E. (2001b). Soil respiration in relation to small-scale patterns of lead and mercury in mor layers of southern Swedish forest sites. Water, Air, & Soil Pollution. Focus, 1(3–4), 395–408.

    CAS  Google Scholar 

  • De Vries, W., Schütze, G., Lofts, S., Tipping, E., Meili, M. & Römkens, P. F. A. M. (2005). Calculation of critical loads for cadmium, lead and mercury. Background document to a mapping manual on critical loads of cadmium, lead and mercury. Alterra report 1104, Wageningen: Alterra.

  • Fölster, J., Bringmark, L., & Lundin, L. (2003). Temporal and spatial variations in soilwater chemistry at three acid forest sites. Water, Air and Soil Pollution, 146(1–4), 171–195.

    Article  Google Scholar 

  • Fröberg, M., Berggren, D., Bergkvist, B., Bryant, C., & Knicker, H. (2003). Contributions of Oi, Oe and Oa horizons to dissolved organic matter in forest floor leachates. Geoderma, 113(3–4), 311–322.

    Article  CAS  Google Scholar 

  • Fröberg, M., Berggren, D., Bergkvist, B., Bryant, C., & Mulder, J. (2006). Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden. Biogeochemistry, 77(1), 1–23.

    Article  CAS  Google Scholar 

  • Giesler, R., Lundström, U. S., & Grip, H. (1996). Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation. European Journal of Soil Science, 47(3), 395–405.

    Article  CAS  Google Scholar 

  • Goyne, K. W., Day, R. L., & Chorover, J. (2000). Artifacts caused by collection of soil solution with passive capillary samplers. Soil Science Society of America Journal, 64(4), 1330–1336.

    Article  CAS  Google Scholar 

  • Grigal, D. F., Kolka, R. K., Fleck, J. A., & Nater, E. A. (2000). Mercury budget of an upland-peatland watershed. Biogeochemistry, 50(1), 95–109.

    Article  CAS  Google Scholar 

  • Hempel, M., Wilken, R. D., Miess, R., Hertwich, J., & Beyer, K. (1995). Mercury contaminated sites – Behavior of mercury and its species in lysimeter experiments. Water, Air and Soil Pollution, 80(1–4), 1089–1098.

    Article  CAS  Google Scholar 

  • Hendershot, W. H., & Courchesne, F. (1991). Comparison of soil solution chemistry in zero tension and ceramic-cup tension lysimeters. Journal of Soil Science, 42(4), 577–583.

    Article  CAS  Google Scholar 

  • Hoover, M. D., & Lunt, H. A. (1952). A key for the classification of forest humus types. Soil Science Society of America Proceedings, 16, 368–370.

    Google Scholar 

  • Johansson, K., Andersson, A., & Andersson, T. (1995). Regional accumulation pattern of heavy metals in lake sediments and forest soils in Sweden. Science of the Total Environment, 161, 373–380.

    Article  Google Scholar 

  • Johansson, K., Bergbäck, B., & Tyler, G. (2001). Impact of atmospheric long-range transport of lead, mercury and cadmium on the Swedish forest environment. Water, Air, & Soil Pollution. Focus, 1, 279–297.

    Article  CAS  Google Scholar 

  • Johansson, K., & Iverfeldt, Å. (1991). Factors influencing the run off of mercury from small watersheds in Sweden. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 24, 2200–2204.

    CAS  Google Scholar 

  • Johansson, K., & Iverfeldt, Å. (1994). The relation between mercury content in soil and the transport of mercury from small catchments in Sweden. In J. W. Huckabee (Ed.) Mercury pollution: Integration and synthesis (pp. 323–328). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Kaiser, K., Guggenberger, G., Haumaier, L., & Zech, W. (2001). Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany. Biogeochemistry, 55(2), 103–143.

    Article  CAS  Google Scholar 

  • Kalbitz, K., & Wennrich, R. (1998). Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of the Total Environment, 209(1), 27–39.

    Article  CAS  Google Scholar 

  • Kaschl, A., Romheld, V., & Chen, Y. (2002). The influence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils. Science of the Total Environment, 291(1–3), 45–57.

    Article  CAS  Google Scholar 

  • Khwaja, A. R., Bloom, P. R., & Brezonik, P. L. (2006). Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter. Environmental Science & Technology, 40(3), 844–849.

    Article  CAS  Google Scholar 

  • Lawrence, G. B., & David, M. B. (1996). Chemical evaluation of soil-solution in acid forest soils. Soil Science, 161(5), 298–313.

    Article  CAS  Google Scholar 

  • Lindqvist, O., Johansson, K., Aastrup, M., Andersson, A., Bringmark, L., Hovsenius, G., et al. (1991). Mercury in the Swedish environment – Recent research on causes, consequences and corrective methods. Water, Air and Soil Pollution, 55(1–2), 1–261.

    Google Scholar 

  • Liski, J. (1995). Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand-effect of trees and implications for sampling. Silva Fennica, 29(4), 255–266.

    Google Scholar 

  • Löfgren, S. (2004). Integrated monitoring of the environmental status in the Swedish forest ecosystems – IM: Summary for 1997–2001 and annual report for 2001. Intern publikation 2004:7. Uppsala: Department of Environmental Assessment, pp. 43, ISSN: 1403–1977X.

  • Löfgren, S. (2005). Integrated monitoring of the environmental status in the Swedish forest ecosystems-IM. Intern publikation 2005:11. Uppsala: Department of Environmental Assessment, pp. 38, ISSN: 1403–1977X.

  • Lundström, U. S., van Breemen, N., Bain, D. C., van Hees, P. A. W., Giesler, R., Gustafsson, J. P., et al. (2000). Advances in understanding the podzolization process resulting from a multidisciplinary study of three coniferous forest soils in the Nordic Countries. Geoderma, 94(2–4), 335–353.

    Article  Google Scholar 

  • MacDonald, J. D., Belanger, N., & Hendershot, W. H. (2004). Column leaching using dry soil to estimate solid-solution partitioning observed in zero-tension lysimeters. 2. Trace metals. Soil & Sediment Contamination, 13(4), 375–390.

    Article  CAS  Google Scholar 

  • Matilainen, T., Verta, M., Korhonen, H., Uusi-Rauva, A., & Niemi, M. (2001). Behavior of mercury in soil profiles: Impact of increased precipitation, acidity, and fertilization on mercury methylation. Water, Air and Soil Pollution, 125(1–4), 105–119.

    Article  CAS  Google Scholar 

  • McKenzie, N. J., & Ryan, P. J. (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89(1–2), 67–94.

    Article  Google Scholar 

  • Meili, M. (1991). The coupling of mercury and organic matter in the biogeochemical cycle – Towards a mechanistic model for the boreal forest zone. Water, Air and Soil Pollution, 56, 333–347.

    Article  CAS  Google Scholar 

  • Meili, M., Bishop, K., Bringmark, L., Johansson, K., Munthe, J., Sverdrup, H., et al. (2003). Critical levels of atmospheric pollution: Criteria and concepts for operational modelling of mercury in forest and lake ecosystems. Science of the Total Environment, 304, 83–106.

    Article  CAS  Google Scholar 

  • Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S., & Matzner, E. (2001). Fluxes and concentrations of dissolved organic carbon and nitrogen – A synthesis for temperate forests. Biogeochemistry, 52(2), 173–205.

    Article  Google Scholar 

  • Michalzik, B., Tipping, E., Mulder, J., Lancho, J. F. G., Matzner, E., Bryant, C. L., et al. (2003). Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry, 66(3), 241–264.

    Article  CAS  Google Scholar 

  • Munthe, J., Kindbom, K., Kruger, O., Petersen, G., Pacyna, J., & Iverfeldt, Å. (2001). Examining source–receptor relationships for mercury in Scandinavia. Water, Air, & Soil Pollution. Focus, 1, 299–310.

    CAS  Google Scholar 

  • Nieminen, T. M., Derome, J., & Helmisaari, H. S. (1999). Interactions between precipitation and Scots pine canopies along a heavy-metal pollution gradient. Environmental Pollution, 106(1), 129–137.

    Article  CAS  Google Scholar 

  • Porvari, P., Verta, M., Munthe, J., & Haapanen, M. (2003). Forestry practices increase mercury and methyl mercury output from boreal forest catchments. Environmental Science & Technology, 37(11), 2389–2393.

    Article  CAS  Google Scholar 

  • Reimann, C., Siewers, U., Skarphagen, H., & Banks, D. (1999). Does bottle type and acid-washing influence trace element analyses by ICP-MS on water samples? A test covering 62 elements and four bottle types: High density polyethene (HDPE), polypropene (PP), fluorinated ethene propene copolymer (FEP) and perfluoroalkoxy polymer (PFA). Science of the Total Environment, 239(1–3), 111–130.

    Article  CAS  Google Scholar 

  • Rühling, Å., & Tyler, G. (2001). Changes in atmospheric deposition rates of heavy metals in Sweden. A summary of nationwide Swedish surveys in 1968/70–1995. Water, Air, & Soil Pollution. Focus, 1(3–4), 311–323.

    Google Scholar 

  • Sauvé, S., Hendershot, W., & Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environmental Science & Technology, 34(7), 1125–1131.

    Article  CAS  Google Scholar 

  • Schuster, E. (1991). The behavior of mercury in the soil with special emphasis on complexation and adsorption processes – A review of the literature. Water, Air and Soil Pollution, 56, 667–680.

    Article  CAS  Google Scholar 

  • Schlüter, K., & Gäth, S. (1997). Modelling leaching of inorganic Hg(II) in a Scandinavian iron-humus podzol – Validation and long-term leaching under various deposition rates. Water, Air and Soil Pollution, 96(1–4), 301–320.

    Google Scholar 

  • Skyllberg, U., Bloom, P. R., Qian, J., Lin, C. M., & Bleam, W. F. (2006). Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environmental Science & Technology, 40(13), 4174–4180.

    Article  CAS  Google Scholar 

  • Skyllberg, U., Qian, J., Frech, W., Xia, K., & Bleam, W. F. (2003). Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry, 64(1), 53–76.

    Article  CAS  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. New York: W. H. Freeman and Co (776 pp.).

    Google Scholar 

  • St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Hall, B. D., Rolfhus, K. R., Scott, K. J., et al. (2001). Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environmental Science & Technology, 35(15), 3089–3098.

    Article  CAS  Google Scholar 

  • Tate, R. L. (1987). Soil organic matter. Biological and ecological effects. New York: Wiley (291 pp.).

    Google Scholar 

  • Tipping, E., Fröberg, M., Berggren, D., Mulder, J., & Bergkvist, B. (2005). DOC leaching from a coniferous forest floor: Modeling a manipulation experiment. Journal of Plant Nutrition and Soil Science, 168(3), 316–324.

    Article  CAS  Google Scholar 

  • Tipping, E., & Hurley, M. A. (1992). A unifying model of cation binding by humic substances. Geochimica et Cosmochimica Acta, 56, 3627–3641.

    Article  CAS  Google Scholar 

  • Tyler, G. (2005). Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest. Forest Ecology and Management, 206(1–3), 167–177.

    Article  Google Scholar 

  • Welp, G., & Brummer, G. W. (1999). Adsorption and solubility of ten metals in soil samples of different composition. Journal of Plant Nutrition and Soil Science, 162(2), 155–161.

    Article  CAS  Google Scholar 

  • Wilcke, W., Guschker, C., Kobza, J., & Zech, W. (1999). Heavy metal concentrations, partitioning, and storage in Slovak forest and arable soils along a deposition gradient. Journal of Plant Nutrition and Soil Science, 162(2), 223–229.

    Article  CAS  Google Scholar 

  • Wolt, J. (1994). Soil solution chemistry: Applications to environmental science. New York: Wiley (345 pp).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staffan Åkerblom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åkerblom, S., Meili, M., Bringmark, L. et al. Partitioning of Hg Between Solid and Dissolved Organic Matter in the Humus Layer of Boreal Forests. Water Air Soil Pollut 189, 239–252 (2008). https://doi.org/10.1007/s11270-007-9571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9571-1

Keywords

Navigation