Skip to main content
Log in

Water-Quality Diagnosis and Metal Distribution in a Strongly Polluted Zone of Deûle River (Northern France)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Using ICP-AES and ICP-MS, several metals were analyzed in water and suspended particulate matter (SPM) samples collected under normal turbidity conditions at various stations from Deûle river (in northern France) to assess the impact of a former smelting plant on the fate of particulate elements and on the water quality in this aquatic environment. Compared to their regional background, particulate Pb, Zn and Cd were found to be most enriched, suggesting anthropogenic inputs from bed sediments into the water column mainly due to physical disturbances induced by barges traffics. Conversely, no significant enrichments of particulate metals such as Cu, Cr and Ni were observed in Deûle SPM. Characterization of SPM with analyses of mineralogical and chemical compositions—using environmental scanning electron microscopy equipped with an energy dispersive X-ray spectrometer (ESEM/EDS)—indicated the presence of micro-specimens attributed to anthropogenic minerals, mostly PbS and ZnS. The calculated enrichment index (or the geoaccumulation index, I geo), enrichment factor (EF) and the partition coefficient (K d) confirmed that SPM was strongly polluted in cadmium, lead and zinc, moderately polluted in copper and unpolluted in chromium and nickel. Based on the analytical data obtained for SPM from the BCR (European Community Bureau of Reference) sequential extraction scheme, it was concluded that: (i) the reducible phases were largely more important for the binding of Pb and Cd than that of Zn and Ni and in a lesser extent Cu and Cr; (ii) copper was found to be mostly associated with the sulphides/organics fraction; (iii) chromium with a lithogenic origin was extracted in the largest percentage in the residual phase; and (iv) zinc was bound to the exchangeable-carbonate phase in the largest percentage in the particles analysed, followed by nickel and cadmium, suggesting that these metals might be easily remobilized if changes in environmental conditions would occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AFNOR.A. N. (1990) Détermination des matières en suspension: Norme AFNOR NFT 90–105. In Eaux Méthodes d’Essais (ed. AFNOR), pp. 266–270.

  • Ahn, J. S., Park, Y. S., Kim, J. Y., & Kim, K. W. (2005). Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea. Environmental Geochemistry and Health, 27, 147–157. doi:10.1007/s10653-005-0121-8.

    Article  CAS  Google Scholar 

  • Ajay, S. O., & van-Loon, G. W. (1989). Studies on redistribution during the analytical fractionation of metals in sediments. The Science of the Total Environment, 87/88, 171–187. doi:10.1016/0048-9697(89)90233-7.

    Article  Google Scholar 

  • Audry, S., Schäfer, J., Blanc, G., & Jouanneau, J. M. (2004). Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution, 132, 413–426. doi:10.1016/j.envpol.2004.05.025.

    Article  CAS  Google Scholar 

  • Baffi, F., Ianni, C., Soggia, F., & Maggi, E. (1998). Evaluation of the acetate buffer attack of a sequential extraction scheme for marine particulate metal speciation studies by scanning electron microscopy with energy dispersive X-ray analysis. Analytica Chimica Acta, 360, 27–34. doi:10.1016/S0003-2670(97)00716-2.

    Article  CAS  Google Scholar 

  • Baruah, N. K., Kotoky, P., Bhattcharyya, K. G., & Borah, G. C. (1996). Metal speciation in Jhanji river sediments. The Science of the Total Environment, 193, 1–12. doi:10.1016/S0048-9697(96)05318-1.

    Article  CAS  Google Scholar 

  • Bhattacharya, A., Routh, J., Jacks, G., Bhattacharya, P., & Mörth, M. (2006). Environmental assessment of advanced mine tailings in Adak, Västerbotten district (northern Sweden). Applied Geochemistry, 21, 1760–1780. doi:10.1016/j.apgeochem.2006.06.011.

    Article  CAS  Google Scholar 

  • Boughriet, A., Billon, G., Proix, N., Leermakers, M., Fischer, J. C., & Ouddane, B. (2007a). Fractionation of anthropogenic lead and zinc in Deûle river sediments. Environmental Chemistry, 4, 114–122. doi:10.1071/EN06044.

    Article  CAS  Google Scholar 

  • Boughriet, A., Laureyns, J., Recourt, P., Sobanska, S., Billon, G., Ouddane, B., et al. (2004). Raman and SEM/EDX microanalytical studies of an environment-polluting lead ore. Microscopy and Analysis, 92, 17–19.

    Google Scholar 

  • Boughriet, A., Proix, N., Billon, G., Recourt, P., & Ouddane, B. (2007b). Environmental impacts of heavy metal discharges from a smelter in Deûle-canal sediments (Northern France): concentration levels and chemical distribution. Water, Air, and Soil Pollution, 180, 83–95. doi:10.1007/s11270-006-9252-5.

    Article  CAS  Google Scholar 

  • Bruce, S. L., Noller, B. N., Grigg, A. H., Mullen, B. F., Mulligan, D. R., Ritchie, P., et al. (2003). A field study conducted at Kidston Gold Mine, to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle. Toxicology Letters, 137, 23–34. doi:10.1016/S0378-4274(02)00378-8.

    Article  CAS  Google Scholar 

  • Camusso, M., Galassi, S., & Vignati, D. (2002). Assessment of river Po sediment quality by micropollutant analysis. Water Research, 36, 2491–2504. doi:10.1016/S0043-1354(01)00485-7.

    Article  CAS  Google Scholar 

  • Chester, R. (1990). Marine geochemistry. London: Unwin Hyman.

    Google Scholar 

  • Davide, V., Pardos, M., Deserens, J., Ugazio, G., Thomas, R., & Dominik, J. (2003). Characterisation of bed sediments and suspension of the river Po (Italy) during normal and high flow conditions. Water Research, 37, 2847–2864. doi:10.1016/S0043-1354(03)00133-7.

    Article  CAS  Google Scholar 

  • Dushenko, W. T., Bright, D. A., & Reimer, K. J. (1995). Arsenic bioaccumulation and toxicity in aquatic macrophytes exposed to gold-mine effluent: relationships with environmental partitioning, metal uptake and nutrients. Aquatic Botany, 50(2), 141–158. doi:10.1016/0304-3770(95)00448-9.

    Article  CAS  Google Scholar 

  • El-Bilali, L., Rasmussen, P. E., Hall, G. E. M., & Fortin, D. (2002). Role of sediment composition in trace metal distribution in lake sediments. Applied Geochemistry, 17, 1171–1181. doi:10.1016/S0883-2927(01)00132-9.

    Article  CAS  Google Scholar 

  • Holtzapffel, T. (1985) Les Minéraux Argileux: Préparation, Analyse Diffractométrique et Détermination. Publication N°12, Société Géologique du Nord (France).

  • Ianni, C., Magi, E., Rivaro, P., & Ruggieri, N. (2000). Trace metals in Adriatic coastal sediments: distribution and speciation pattern. Toxicological and Environmental Chemistry, 78, 73–92.

    Article  CAS  Google Scholar 

  • Izquierdo, C., Usero, J., & Gracia, I. (1997). Speciation of heavy metals in sediments from salt marshes on the southern Atlantic coast of Spain. Marine Pollution Bulletin, 34(2), 123–128. doi:10.1016/S0025-326X(96)00059-8.

    Article  CAS  Google Scholar 

  • Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in superficial sediments from the Tees estuary, North-east England. Marine Pollution Bulletin, 34(10), 768–779. doi:10.1016/S0025-326X(97)00047-7.

    Article  CAS  Google Scholar 

  • Jordao, C. P., & Hickless, G. (1989). Chemical associations of Zn, Cd, Pb and Cu in soils and sediments determined by the sequential extraction technique. Environmental Technology, 10, 743–752.

    Article  CAS  Google Scholar 

  • Kemp, A. L. W., & Thomas, R. L. (1976). ‘Cultural impact on the geochemistry of the sediments of Lake Ontario. Geoscience Canada, 3, 191–207.

    Google Scholar 

  • Kim, M. J., & Jung, Y. (2004). Vertical distribution and mobility of arsenic and heavy metals in and around mine tailings of an abandoned mine. Journal of Environmental Science and Health, 39, 203–222. doi:10.1081/ESE-120027379.

    Article  CAS  Google Scholar 

  • Korfali, S. I., & Davies, B. E. (2004). Speciation of metals in sediment and water in a river underlain by limestone: role of carbonate species for purification capacity of rivers. Advances in Environmental Research, 8, 599–612. doi:10.1016/S1093-0191(03)00033-9.

    Article  CAS  Google Scholar 

  • Lee, M. R., & Correa, J. A. (2005). Effect of copper mine tailings disposal on littoral meiofaunal assemblages in the Atacama region of northern Chile. Marine Environmental Research, 59, 1–18. doi:10.1016/j.marenvres.2004.01.002.

    Article  CAS  Google Scholar 

  • Martin, J. M., & Whitfield, M. (1983). The significance of the river input of chemical elements to the ocean. In: Wong, C. S., Boyle, E., Bruland, K. W., Burtan, J. D. E., Goldberg, E. D.(Eds.), Heavy Metals in the Marine Environment. Plenum Press, New York, pp. 265–296

  • Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast Spain. Chemosphere, 55, 431–442. doi:10.1016/j.chemosphere.2003.10.047.

    Article  CAS  Google Scholar 

  • Müller, G. (1981). Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chemiker Zeitung, 105, 157–164.

    Google Scholar 

  • Nilsson, O., & Sternbeck, J. (1999). A mechanistic model for calcite growth using surface speciation. Geochimica et Cosmochimica Acta, 63, 217–255. doi:10.1016/S0016-7037(99)00026-5.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Coker, R. D. (1980). Trace metals in humic and fulvic acids from lake Ontario sediments. Environmental Science & Technology, 4, 443–446. doi:10.1021/es60164a001.

    Article  Google Scholar 

  • Pardo, R. E., Perez-Barrado, L., & Vega, M. (1990). Determination and speciation of heavy metals in sediments of the Pisuerga river. Water Research, 24(3), 373–379. doi:10.1016/0043-1354(90)90016-Y.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Rauret, G., Lopez-Sanchez, J. F., Rubio, R., Ure, A., & Muntau, H. (1997). The certification of the EDTA-extractable contents (mass fractions) of Cd, Cr, Ni, Pb and Zn in sediment following a three-step sequential extraction procedure. CRM 601, 54. European Commission/BCR information.

  • Ranu, G., Tandon, S. N., Mathur, R. P., & Singh, O. V. (1993). Speciation of metals in Yamuna river sediments. The Science of the Total Environment, 136, 229–242. doi:10.1016/0048-9697(93)90311-S.

    Article  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Davison, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61. doi:10.1039/a807854h.

    Article  CAS  Google Scholar 

  • Reeder, R. J. (1996). Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochimica et Cosmochimica Acta, 60, 1543–1552. doi:10.1016/0016-7037(96)00034-8.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. (1984). The ecology of freshwater phytoplankton. Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • Roychoudhury, A. N., & Starke, M. F. (2006). Partitioning and mobility of trace metals in the Blesbokspruit: impact assessment of dewatering of mine waters in the East Rand, South Africa. Applied Geochemistry, 21, 1044–1063. doi:10.1016/j.apgeochem.2006.02.024.

    Article  CAS  Google Scholar 

  • Rubio, R., Lopez-Sanchez, J. F., & Rauret, G. (1991). La especiacion solida de trazas de metales en sedimentos. Applicacion a sedimentos muy contaminados. Anales Quimica, 87, 599–605.

    CAS  Google Scholar 

  • Ruiz, F. (2001). Trace metals in estuarine sediments from the southwestern Spanish Coast. Marine Pollution Bulletin, 42, 482–490.

    CAS  Google Scholar 

  • Sainz, A., & Ruiz, F. (2006). Influence of the very polluted inputs of the Tinto-Odiel system on the adjacent littoral sediments of southwestern Spain: a statistical approach. Chemosphere, 62(10), 1612–1622. doi:10.1016/j.chemosphere.2005.06.045.

    Article  CAS  Google Scholar 

  • Samanidou, V., & Fytianos, K. (1987). Partitioning of heavy metals into selective fractions in sediments from rivers in northern Greece. The Science of the Total Environment, 67, 279–285. doi:10.1016/0048-9697(87)90219-1.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Douay, F., Baize, D., Fourrier, H., Proix, N., & Schvartz, C. (2006). Trace elements in soils developed in sedimentary materials from Northern France. Geoderma, 136, 912–926. doi:10.1016/j.geoderma.2006.06.010.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Douay, T., Proix, N., & Fournier, H. (2000). Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environmental Pollution, 107, 377–389. doi:10.1016/S0269-7491(99)00165-7.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002). Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water, Air, and Soil Pollution, 135, 173–194. doi:10.1023/A:1014758811194.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851. doi:10.1021/ac50043a017.

    Article  CAS  Google Scholar 

  • Tokalioglu, S., Kartal, S., & Elci, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 413, 33–40. doi:10.1016/S0003-2670(00)00726-1.

    Article  CAS  Google Scholar 

  • Turner, A., & Millward, G. E. (2002). Suspended particles: their role in estuarine biogeochemical cycles. Estuarine, Coastal and Shelf Science, 55, 857–883. doi:10.1006/ecss.2002.1033.

    Article  CAS  Google Scholar 

  • Vdovic, N., Billon, G., Gabelle, C., Wartel, M., & Potdevin, J.-L. (2006). Remobilization of metals from slag and polluted sediments (case study: the River Deûle Canal, North of France). Environmental Pollution, 141, 359–369. doi:10.1016/j.envpol.2005.08.034.

    Article  CAS  Google Scholar 

  • Zhang, J., Huang, W. W., & Wang, J. H. (1994). Trace-metal chemistry of the Huanghe (Yellow River), China—examination of the data from in situ measurements and laboratory approach. Chemical Geology, 114, 83–94. doi:10.1016/0009-2541(94)90043-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly founded by the Stardust Program (INTERREG III) and the Region “Nord Pas-de-Calais”. The authors would like to thank Christine Grare and Romain Descamps for the samplings and all the technical support, and Martin Laviale (GEPV Laboratory) for the identification of diatoms species. We are also very grateful to Jean Prygiel (Agence de l’Eau Artois-Picardie) for providing us analytical data obtained for Deûle SPM from the monitoring stations located at sites 6–10 in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ouddane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesven, L., Lourino-Cabana, B., Billon, G. et al. Water-Quality Diagnosis and Metal Distribution in a Strongly Polluted Zone of Deûle River (Northern France). Water Air Soil Pollut 198, 31–44 (2009). https://doi.org/10.1007/s11270-008-9823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9823-8

Keywords

Navigation