Skip to main content
Log in

Characterization of AMD Pollution in the River Tinto (SW Spain). Geochemical Comparison Between Generating Source and Receiving Environment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

With the aim of obtaining precise knowledge of the spatial–temporal behavior of the chemistry of the river Tinto, both in the area of the headwaters, close to the point at which the acid mine drainage (AMD) pollution is carried into this river, and in the area before tidal influence, daily sampling was carried out from the end of October 2007 to the beginning of June 2008. In addition to pH, conductivity, and redox potential, sulfates, As, Cd, Fe, Cu, Zn, and Mn were determined for each sample. By studying the results obtained from the statistical processing applied, it can be deduced, first and foremost, that the river Tinto is a watercourse which is highly polluted by acid mine drainage throughout its length. It can also be determined that the order of abundance of the polluting elements, in terms of the concentration of the various parameters in milligrams per liter, follows the pattern, both in the generating source and the receiving environment: SO4 > Fe > Cu > Zn > Mn > Cd > As. The concentration values for As carried into the river in the generating source, with average values of 640 μg l−1 and with a maximum of 1,540 μg l−1 (ten times greater than the maximum found in the receiving environment), far exceed 10 μg l−1, the value established by the EU as the maximum permissible concentration in drinking water, as a consequence of the high eco-toxicity of this element. Specifically, in the correlation matrix, no correlation was found between the variables for both points. It can only be made out in the cross-correlation function graphs through low correlation, prior to time t = 0, that pollution in the generating source leads to pollution in the receiving environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amils, R. (2006). Rio Tinto as terrestrial analogue for a putative Martian habitat. AIAA 57th Internacional Astronautical Congreso, IAC, 16, 11325–11339.

    Google Scholar 

  • Aroba, J., Grande, J. A., Andujar, J. M., de la Torre, M. L., & Riquelme, J. C. (2007). Application of fuzzy logic and data mining techniques as tool for qualitative interpretation of acid mine drainage processes. Environmental Geology, 53, 135–145.

    Article  Google Scholar 

  • Bisquerra, R. (1989). Introducción conceptual al análisis multivariable. Barcelona: Promoc. Public. Univ, S.A.

    Google Scholar 

  • Borrego, J., Morales, J. A., de la Torre, M. L., & Grande, J. A. (2002). Geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (Southwester Spain). Environmental Geology, 41, 785–796.

    Article  CAS  Google Scholar 

  • Cánovas, C. R., Hubbard, C. G., Olías, M., Nieto, J. M., Black, S., & Coleman, M. L. (2008). Hydrochemical variations and contaminant load in the Río Tinto (Spain) during flood events. Journal of Hydrology, 350, 25–40.

    Article  Google Scholar 

  • Casiot, C., Egal, M., Elbaz-Poulichet, F., Bruneel, O., Bancon-Montigny, C., Cordier, M., et al. (2009). Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amos River, France): Preliminary assessment of impacts on fish (Leuciscus cephalus). Applied Geochemistry. doi:10.1016/j.apgeochem.2009.01.006.

    Google Scholar 

  • Cheng, H., Hu, Y., Luo, J., Xu, B., & Zhao, J. (2008). Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.10.070.

    Google Scholar 

  • de la Torre, M. L., Grande, J. A., Jiménez, A., Borrego, J., & Díaz Curiel, J. (2009). Time evolution of an AMD-affected river chemical makeup. Water Resources Management, 23, 1275–1289.

    Article  Google Scholar 

  • Demchack, J., Skousen, J., & McDonald, L. M. (2004). Longevity of acid discharges from underground mines located above the regional water table. Journal of Environmental Quality, 33, 656–668.

    Article  Google Scholar 

  • Egal, M., Elbaz-Poulichet, F., Casiot, C., Motelica-Heino, M., Négrel, P., Bruneel, O., et al. (2008). Iron isotopes in acid mine waters and iron-rich solids from the Tinto–Odiel Basin (Iberian Pyrite Belt, Southwest Spain). Chemical Geology, 253, 162–171.

    Article  CAS  Google Scholar 

  • EMCBC. (1996). The perpetual pollution machine. Acid mine drainage (pp. 1–6). Canada: B.C. Mining Control.

    Google Scholar 

  • Fernández-Remolar, D. C., Gómez-Elvira, J., Gómez, F., Sebastián, E., Martín, J., Manfredi, J. A., et al. (2004). The Tinto river, an extreme acidic environment under control iron, as an analog of the Terra Meridiani hematite site of Mars. Planetary and Space Science, 52(1–3), 239–248.

    Article  Google Scholar 

  • Grande, J. A., Borrego, J., de la Torre, M. L., & Sáinz, A. (2003). Application of cluster analysis to the geochemistry zonation of the estuary waters in The Tinto and Odiel rivers. Environmental Geochemistry and Health, 25, 233–246.

    Article  CAS  Google Scholar 

  • Grande, J. A., Borrego, J., Morales, J. A., & de la Torre, M. L. (2003). A description of how metal pollution occurs in the Tinto–Odiel rias (Huelva-Spain) through the application of cluster analysis. Marine Pollution Bulletin, 46, 475–480.

    Article  CAS  Google Scholar 

  • Grande, J. A., Beltrán, R., Sáinz, A., Santos, J. C., de la Torre, M. L., & Borrego, J. (2005). Acid mine drainage and acid rock drainage processes in the environment of Herrerias Mine (Iberian Pyrite Belt, Huelva- Spain), and impact on the Andevalo dam. Environmental Geology, 47, 185–196.

    Article  CAS  Google Scholar 

  • Grande, J. A., Andújar, J. M., Aroba, J., de la Torre, M. L., & Beltrán, R. (2005). Precipitation, pH and metal load in AMD river basins: An application of fuzzy clustering algorithms to the process characterization. Journal of Environmental Monitoring, 7, 325–334.

    Article  CAS  Google Scholar 

  • Jiménez, A., Aroba, J., de la Torre, M. L., Andújar, J. M., & Grande, J. A. (2009). Model of behaviour of conductivity versus pH in acid mine drainage waters, based on fuzzy logic and data mining techniques. Journal of Hydroinformatics, 112, 147–153.

    Article  Google Scholar 

  • Lin, C., Wu, Y., Lu, W., Chen, A., & Liu, Y. (2007). Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event. Journal of Hazardous Materials, 142, 199–207.

    Article  CAS  Google Scholar 

  • Morales, J. A., Borrego, J., San Miguel, E. G., López-González, N., & Carro, B. (2008). Sedimentary record of recent tsunamis in the Huelva Estuary (southwestern Spain). Quaternary Science Reviews, 27, 734–746.

    Article  Google Scholar 

  • Nieto, J. M., Sarmiento, A. M., Olías, M., Canovas, C. R., Riba, I., Kalman, J., et al. (2007). Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environment International, 33(4), 445–455.

    Article  Google Scholar 

  • Olías, M., Nieto, J. M., Sarmiento, A. M., Cerón, J. C., & Cánovas, C. R. (2004). Seasonal water quality variations in a river affected by acid mine drainage: The Odiel River (South West Spain). The Science of the Total Environment, 333, 267–281.

    Article  Google Scholar 

  • Ortiz M. 2003. Aproximación a la minería y metalurgia de minas de Riotinto desde la antigüedad al siglo XIX. PhD Thesis. Spain.

  • Pinedo Vara, I. (1963). Piritas de Huelva. Madrid: Summa.

    Google Scholar 

  • Ruiz, F., Borrego, J., González-Regalado, M. L., López, N., & Carro, B. (2008). Abad M. Impact of millennial mining activities on sediments and microfauna on the Tinto River estuary (SW Spain). Marine Pollution Bulletin, 56, 1258–1264.

    Article  CAS  Google Scholar 

  • Sáez, R., Pascual, E., Toscano, M., & Almodovar, G. R. (1999). The Iberian type of volcano-sedimentary massive sulphide deposits. Mineralium Deposita, 34, 549–570.

    Article  Google Scholar 

  • Sáinz, A., Grande, J. A., de la Torre, M. L., & Sánchez-Rodas, D. (2002). Characterisation of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers. Journal of Environmental Management, 64, 345–353.

    Article  Google Scholar 

  • Sáinz, A., Grande, J. A., & de la Torre, M. L. (2004). Characterisation of heavy metal discharge into the Ria of Huelva. Environment International, 30, 557–566.

    Article  Google Scholar 

  • Sáinz, A., Grande, J. A., & de la Torre, M. L. (2005). Application of systemic approach to the study of pollution of the Tinto and Odiel rivers (Spain). Environmental Monitoring and Assessment, 102, 435–445.

    Article  Google Scholar 

  • Sánchez-Rodas, D., Gómez-Ariza, J. L., Giraldez, I., Velasco, A., & Morales, E. (2005). Arsenic speciation in river and estuarine waters from southwest Spain. The Science of the Total Environment, 345(1–3), 207–217.

    Google Scholar 

  • Sarmiento, A. M., Nieto, J. M., Casiot, C., Elbaz-Poulichet, F., & Egal, M. (2009). Inorganic arsenic speciation at river basin scales: The Tinto and Odiel Rivers in the Iberian Pyrite Belt, SW Spain. Environmental Pollution, 157(4), 1202–1209.

    Article  CAS  Google Scholar 

  • Sarmiento, A. M., Nieto, J. M., Olías, M., & Cánovas, C. R. (2009). Hydrochemical characteristics and seasonal influence on pollution by acid mine drainage in the Odiel river basin. Applied Geochemistry. doi:10.1016/j.apgeochem.2008.12.025.

    Google Scholar 

  • Sobron, P., Rull, F., Sobron, F., Sanz, A., Medina, J., & Nielsen, C. J. (2007). Raman spectroscopy of the system iron(III)–sulfuric acid–water: An approach to Tinto River´s (Spain) hydrogeochemistry. Spectrochimica Acta Part A, 68, 1138–1142.

    Article  CAS  Google Scholar 

  • Stoker, C. R., Cannon, H. N., Duganan, S. E., Lemke, L. G., Glass, B. J., Miller, D., et al. (2008). The 2005 MARTE robotic drilling experiment in Río Tinto, Spain: Objectives, approach, and results of a simulated mission to search for life in the martian subsurface. Astrobiology, 8(5), 921–945.

    Article  CAS  Google Scholar 

  • Vicente-Martorell, J. J., Galindo-Riaño, M. D., & García-Vargas, M. (2009). Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. Journal of Hazardous Materials, 162, 823–836.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Andalusian Autonomous Government Excellence Projects, Project P06-RNM-02167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa de la Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Torre, M.L., Grande, J.A., Graiño, J. et al. Characterization of AMD Pollution in the River Tinto (SW Spain). Geochemical Comparison Between Generating Source and Receiving Environment. Water Air Soil Pollut 216, 3–19 (2011). https://doi.org/10.1007/s11270-010-0510-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0510-1

Keywords

Navigation